Step |
Hyp |
Ref |
Expression |
1 |
|
lmimlbs.j |
|- J = ( LBasis ` S ) |
2 |
|
lmimlbs.k |
|- K = ( LBasis ` T ) |
3 |
|
brlmic |
|- ( S ~=m T <-> ( S LMIso T ) =/= (/) ) |
4 |
|
n0 |
|- ( ( S LMIso T ) =/= (/) <-> E. f f e. ( S LMIso T ) ) |
5 |
3 4
|
bitri |
|- ( S ~=m T <-> E. f f e. ( S LMIso T ) ) |
6 |
|
n0 |
|- ( J =/= (/) <-> E. b b e. J ) |
7 |
1 2
|
lmimlbs |
|- ( ( f e. ( S LMIso T ) /\ b e. J ) -> ( f " b ) e. K ) |
8 |
7
|
ne0d |
|- ( ( f e. ( S LMIso T ) /\ b e. J ) -> K =/= (/) ) |
9 |
8
|
ex |
|- ( f e. ( S LMIso T ) -> ( b e. J -> K =/= (/) ) ) |
10 |
9
|
exlimdv |
|- ( f e. ( S LMIso T ) -> ( E. b b e. J -> K =/= (/) ) ) |
11 |
6 10
|
syl5bi |
|- ( f e. ( S LMIso T ) -> ( J =/= (/) -> K =/= (/) ) ) |
12 |
11
|
exlimiv |
|- ( E. f f e. ( S LMIso T ) -> ( J =/= (/) -> K =/= (/) ) ) |
13 |
5 12
|
sylbi |
|- ( S ~=m T -> ( J =/= (/) -> K =/= (/) ) ) |