Metamath Proof Explorer


Theorem lmiclbs

Description: Having a basis is an isomorphism invariant. (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Hypotheses lmimlbs.j J = LBasis S
lmimlbs.k K = LBasis T
Assertion lmiclbs S 𝑚 T J K

Proof

Step Hyp Ref Expression
1 lmimlbs.j J = LBasis S
2 lmimlbs.k K = LBasis T
3 brlmic S 𝑚 T S LMIso T
4 n0 S LMIso T f f S LMIso T
5 3 4 bitri S 𝑚 T f f S LMIso T
6 n0 J b b J
7 1 2 lmimlbs f S LMIso T b J f b K
8 7 ne0d f S LMIso T b J K
9 8 ex f S LMIso T b J K
10 9 exlimdv f S LMIso T b b J K
11 6 10 syl5bi f S LMIso T J K
12 11 exlimiv f f S LMIso T J K
13 5 12 sylbi S 𝑚 T J K