Database
BASIC LINEAR ALGEBRA
Vectors and free modules
Characterization of free modules
lmiclbs
Next ⟩
islindf4
Metamath Proof Explorer
Ascii
Unicode
Theorem
lmiclbs
Description:
Having a basis is an isomorphism invariant.
(Contributed by
Stefan O'Rear
, 26-Feb-2015)
Ref
Expression
Hypotheses
lmimlbs.j
⊢
J
=
LBasis
⁡
S
lmimlbs.k
⊢
K
=
LBasis
⁡
T
Assertion
lmiclbs
⊢
S
≃
𝑚
T
→
J
≠
∅
→
K
≠
∅
Proof
Step
Hyp
Ref
Expression
1
lmimlbs.j
⊢
J
=
LBasis
⁡
S
2
lmimlbs.k
⊢
K
=
LBasis
⁡
T
3
brlmic
⊢
S
≃
𝑚
T
↔
S
LMIso
T
≠
∅
4
n0
⊢
S
LMIso
T
≠
∅
↔
∃
f
f
∈
S
LMIso
T
5
3
4
bitri
⊢
S
≃
𝑚
T
↔
∃
f
f
∈
S
LMIso
T
6
n0
⊢
J
≠
∅
↔
∃
b
b
∈
J
7
1
2
lmimlbs
⊢
f
∈
S
LMIso
T
∧
b
∈
J
→
f
b
∈
K
8
7
ne0d
⊢
f
∈
S
LMIso
T
∧
b
∈
J
→
K
≠
∅
9
8
ex
⊢
f
∈
S
LMIso
T
→
b
∈
J
→
K
≠
∅
10
9
exlimdv
⊢
f
∈
S
LMIso
T
→
∃
b
b
∈
J
→
K
≠
∅
11
6
10
syl5bi
⊢
f
∈
S
LMIso
T
→
J
≠
∅
→
K
≠
∅
12
11
exlimiv
⊢
∃
f
f
∈
S
LMIso
T
→
J
≠
∅
→
K
≠
∅
13
5
12
sylbi
⊢
S
≃
𝑚
T
→
J
≠
∅
→
K
≠
∅