| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrdsymb1 |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( P ` 0 ) e. V ) |
| 2 |
|
lswccats1 |
|- ( ( P e. Word V /\ ( P ` 0 ) e. V ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( P ` 0 ) ) |
| 3 |
1 2
|
syldan |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( P ` 0 ) ) |
| 4 |
|
simpl |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> P e. Word V ) |
| 5 |
1
|
s1cld |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> <" ( P ` 0 ) "> e. Word V ) |
| 6 |
|
lencl |
|- ( P e. Word V -> ( # ` P ) e. NN0 ) |
| 7 |
|
elnnnn0c |
|- ( ( # ` P ) e. NN <-> ( ( # ` P ) e. NN0 /\ 1 <_ ( # ` P ) ) ) |
| 8 |
7
|
biimpri |
|- ( ( ( # ` P ) e. NN0 /\ 1 <_ ( # ` P ) ) -> ( # ` P ) e. NN ) |
| 9 |
6 8
|
sylan |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` P ) e. NN ) |
| 10 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` P ) ) <-> ( # ` P ) e. NN ) |
| 11 |
9 10
|
sylibr |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> 0 e. ( 0 ..^ ( # ` P ) ) ) |
| 12 |
|
ccatval1 |
|- ( ( P e. Word V /\ <" ( P ` 0 ) "> e. Word V /\ 0 e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) = ( P ` 0 ) ) |
| 13 |
4 5 11 12
|
syl3anc |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) = ( P ` 0 ) ) |
| 14 |
3 13
|
eqtr4d |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) |