Step |
Hyp |
Ref |
Expression |
1 |
|
lvecdimfi.j |
|- J = ( LBasis ` W ) |
2 |
|
lvecdimfi.w |
|- ( ph -> W e. LVec ) |
3 |
|
lvecdimfi.s |
|- ( ph -> S e. J ) |
4 |
|
lvecdimfi.t |
|- ( ph -> T e. J ) |
5 |
|
lvecdimfi.f |
|- ( ph -> S e. Fin ) |
6 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
7 |
|
eqid |
|- ( mrCls ` ( LSubSp ` W ) ) = ( mrCls ` ( LSubSp ` W ) ) |
8 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
9 |
6 7 8
|
lssacsex |
|- ( W e. LVec -> ( ( LSubSp ` W ) e. ( ACS ` ( Base ` W ) ) /\ A. x e. ~P ( Base ` W ) A. y e. ( Base ` W ) A. z e. ( ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { y } ) ) \ ( ( mrCls ` ( LSubSp ` W ) ) ` x ) ) y e. ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { z } ) ) ) ) |
10 |
2 9
|
syl |
|- ( ph -> ( ( LSubSp ` W ) e. ( ACS ` ( Base ` W ) ) /\ A. x e. ~P ( Base ` W ) A. y e. ( Base ` W ) A. z e. ( ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { y } ) ) \ ( ( mrCls ` ( LSubSp ` W ) ) ` x ) ) y e. ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { z } ) ) ) ) |
11 |
10
|
simpld |
|- ( ph -> ( LSubSp ` W ) e. ( ACS ` ( Base ` W ) ) ) |
12 |
11
|
acsmred |
|- ( ph -> ( LSubSp ` W ) e. ( Moore ` ( Base ` W ) ) ) |
13 |
|
eqid |
|- ( mrInd ` ( LSubSp ` W ) ) = ( mrInd ` ( LSubSp ` W ) ) |
14 |
10
|
simprd |
|- ( ph -> A. x e. ~P ( Base ` W ) A. y e. ( Base ` W ) A. z e. ( ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { y } ) ) \ ( ( mrCls ` ( LSubSp ` W ) ) ` x ) ) y e. ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { z } ) ) ) |
15 |
6 7 8 13 1
|
lbsacsbs |
|- ( W e. LVec -> ( S e. J <-> ( S e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( Base ` W ) ) ) ) |
16 |
15
|
biimpa |
|- ( ( W e. LVec /\ S e. J ) -> ( S e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( Base ` W ) ) ) |
17 |
2 3 16
|
syl2anc |
|- ( ph -> ( S e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( Base ` W ) ) ) |
18 |
17
|
simpld |
|- ( ph -> S e. ( mrInd ` ( LSubSp ` W ) ) ) |
19 |
6 7 8 13 1
|
lbsacsbs |
|- ( W e. LVec -> ( T e. J <-> ( T e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` T ) = ( Base ` W ) ) ) ) |
20 |
19
|
biimpa |
|- ( ( W e. LVec /\ T e. J ) -> ( T e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` T ) = ( Base ` W ) ) ) |
21 |
2 4 20
|
syl2anc |
|- ( ph -> ( T e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` T ) = ( Base ` W ) ) ) |
22 |
21
|
simpld |
|- ( ph -> T e. ( mrInd ` ( LSubSp ` W ) ) ) |
23 |
17
|
simprd |
|- ( ph -> ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( Base ` W ) ) |
24 |
21
|
simprd |
|- ( ph -> ( ( mrCls ` ( LSubSp ` W ) ) ` T ) = ( Base ` W ) ) |
25 |
23 24
|
eqtr4d |
|- ( ph -> ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( ( mrCls ` ( LSubSp ` W ) ) ` T ) ) |
26 |
12 7 13 14 18 22 5 25
|
mreexfidimd |
|- ( ph -> S ~~ T ) |