Metamath Proof Explorer


Theorem lvecdimfi

Description: Finite version of lvecdim which does not require the axiom of choice. The axiom of choice is used in acsmapd , which is required in the infinite case. Suggested by Gérard Lang. (Contributed by Thierry Arnoux, 24-May-2023)

Ref Expression
Hypotheses lvecdimfi.j J = LBasis W
lvecdimfi.w φ W LVec
lvecdimfi.s φ S J
lvecdimfi.t φ T J
lvecdimfi.f φ S Fin
Assertion lvecdimfi φ S T

Proof

Step Hyp Ref Expression
1 lvecdimfi.j J = LBasis W
2 lvecdimfi.w φ W LVec
3 lvecdimfi.s φ S J
4 lvecdimfi.t φ T J
5 lvecdimfi.f φ S Fin
6 eqid LSubSp W = LSubSp W
7 eqid mrCls LSubSp W = mrCls LSubSp W
8 eqid Base W = Base W
9 6 7 8 lssacsex W LVec LSubSp W ACS Base W x 𝒫 Base W y Base W z mrCls LSubSp W x y mrCls LSubSp W x y mrCls LSubSp W x z
10 2 9 syl φ LSubSp W ACS Base W x 𝒫 Base W y Base W z mrCls LSubSp W x y mrCls LSubSp W x y mrCls LSubSp W x z
11 10 simpld φ LSubSp W ACS Base W
12 11 acsmred φ LSubSp W Moore Base W
13 eqid mrInd LSubSp W = mrInd LSubSp W
14 10 simprd φ x 𝒫 Base W y Base W z mrCls LSubSp W x y mrCls LSubSp W x y mrCls LSubSp W x z
15 6 7 8 13 1 lbsacsbs W LVec S J S mrInd LSubSp W mrCls LSubSp W S = Base W
16 15 biimpa W LVec S J S mrInd LSubSp W mrCls LSubSp W S = Base W
17 2 3 16 syl2anc φ S mrInd LSubSp W mrCls LSubSp W S = Base W
18 17 simpld φ S mrInd LSubSp W
19 6 7 8 13 1 lbsacsbs W LVec T J T mrInd LSubSp W mrCls LSubSp W T = Base W
20 19 biimpa W LVec T J T mrInd LSubSp W mrCls LSubSp W T = Base W
21 2 4 20 syl2anc φ T mrInd LSubSp W mrCls LSubSp W T = Base W
22 21 simpld φ T mrInd LSubSp W
23 17 simprd φ mrCls LSubSp W S = Base W
24 21 simprd φ mrCls LSubSp W T = Base W
25 23 24 eqtr4d φ mrCls LSubSp W S = mrCls LSubSp W T
26 12 7 13 14 18 22 5 25 mreexfidimd φ S T