| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lvecdimfi.j | ⊢ 𝐽  =  ( LBasis ‘ 𝑊 ) | 
						
							| 2 |  | lvecdimfi.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 3 |  | lvecdimfi.s | ⊢ ( 𝜑  →  𝑆  ∈  𝐽 ) | 
						
							| 4 |  | lvecdimfi.t | ⊢ ( 𝜑  →  𝑇  ∈  𝐽 ) | 
						
							| 5 |  | lvecdimfi.f | ⊢ ( 𝜑  →  𝑆  ∈  Fin ) | 
						
							| 6 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( mrCls ‘ ( LSubSp ‘ 𝑊 ) )  =  ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 9 | 6 7 8 | lssacsex | ⊢ ( 𝑊  ∈  LVec  →  ( ( LSubSp ‘ 𝑊 )  ∈  ( ACS ‘ ( Base ‘ 𝑊 ) )  ∧  ∀ 𝑥  ∈  𝒫  ( Base ‘ 𝑊 ) ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ∀ 𝑧  ∈  ( ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥  ∪  { 𝑦 } ) )  ∖  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑥 ) ) 𝑦  ∈  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥  ∪  { 𝑧 } ) ) ) ) | 
						
							| 10 | 2 9 | syl | ⊢ ( 𝜑  →  ( ( LSubSp ‘ 𝑊 )  ∈  ( ACS ‘ ( Base ‘ 𝑊 ) )  ∧  ∀ 𝑥  ∈  𝒫  ( Base ‘ 𝑊 ) ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ∀ 𝑧  ∈  ( ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥  ∪  { 𝑦 } ) )  ∖  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑥 ) ) 𝑦  ∈  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥  ∪  { 𝑧 } ) ) ) ) | 
						
							| 11 | 10 | simpld | ⊢ ( 𝜑  →  ( LSubSp ‘ 𝑊 )  ∈  ( ACS ‘ ( Base ‘ 𝑊 ) ) ) | 
						
							| 12 | 11 | acsmred | ⊢ ( 𝜑  →  ( LSubSp ‘ 𝑊 )  ∈  ( Moore ‘ ( Base ‘ 𝑊 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) )  =  ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) | 
						
							| 14 | 10 | simprd | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝒫  ( Base ‘ 𝑊 ) ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ∀ 𝑧  ∈  ( ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥  ∪  { 𝑦 } ) )  ∖  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑥 ) ) 𝑦  ∈  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥  ∪  { 𝑧 } ) ) ) | 
						
							| 15 | 6 7 8 13 1 | lbsacsbs | ⊢ ( 𝑊  ∈  LVec  →  ( 𝑆  ∈  𝐽  ↔  ( 𝑆  ∈  ( mrInd ‘ ( LSubSp ‘ 𝑊 ) )  ∧  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 )  =  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 16 | 15 | biimpa | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑆  ∈  𝐽 )  →  ( 𝑆  ∈  ( mrInd ‘ ( LSubSp ‘ 𝑊 ) )  ∧  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 )  =  ( Base ‘ 𝑊 ) ) ) | 
						
							| 17 | 2 3 16 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆  ∈  ( mrInd ‘ ( LSubSp ‘ 𝑊 ) )  ∧  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 )  =  ( Base ‘ 𝑊 ) ) ) | 
						
							| 18 | 17 | simpld | ⊢ ( 𝜑  →  𝑆  ∈  ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ) | 
						
							| 19 | 6 7 8 13 1 | lbsacsbs | ⊢ ( 𝑊  ∈  LVec  →  ( 𝑇  ∈  𝐽  ↔  ( 𝑇  ∈  ( mrInd ‘ ( LSubSp ‘ 𝑊 ) )  ∧  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 )  =  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 20 | 19 | biimpa | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑇  ∈  𝐽 )  →  ( 𝑇  ∈  ( mrInd ‘ ( LSubSp ‘ 𝑊 ) )  ∧  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 )  =  ( Base ‘ 𝑊 ) ) ) | 
						
							| 21 | 2 4 20 | syl2anc | ⊢ ( 𝜑  →  ( 𝑇  ∈  ( mrInd ‘ ( LSubSp ‘ 𝑊 ) )  ∧  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 )  =  ( Base ‘ 𝑊 ) ) ) | 
						
							| 22 | 21 | simpld | ⊢ ( 𝜑  →  𝑇  ∈  ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ) | 
						
							| 23 | 17 | simprd | ⊢ ( 𝜑  →  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 24 | 21 | simprd | ⊢ ( 𝜑  →  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 25 | 23 24 | eqtr4d | ⊢ ( 𝜑  →  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 )  =  ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 ) ) | 
						
							| 26 | 12 7 13 14 18 22 5 25 | mreexfidimd | ⊢ ( 𝜑  →  𝑆  ≈  𝑇 ) |