Step |
Hyp |
Ref |
Expression |
1 |
|
lvecdimfi.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
2 |
|
lvecdimfi.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
3 |
|
lvecdimfi.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝐽 ) |
4 |
|
lvecdimfi.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝐽 ) |
5 |
|
lvecdimfi.f |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
6 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) = ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
9 |
6 7 8
|
lssacsex |
⊢ ( 𝑊 ∈ LVec → ( ( LSubSp ‘ 𝑊 ) ∈ ( ACS ‘ ( Base ‘ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝒫 ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑧 ∈ ( ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥 ∪ { 𝑦 } ) ) ∖ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑥 ) ) 𝑦 ∈ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥 ∪ { 𝑧 } ) ) ) ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → ( ( LSubSp ‘ 𝑊 ) ∈ ( ACS ‘ ( Base ‘ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝒫 ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑧 ∈ ( ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥 ∪ { 𝑦 } ) ) ∖ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑥 ) ) 𝑦 ∈ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥 ∪ { 𝑧 } ) ) ) ) |
11 |
10
|
simpld |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑊 ) ∈ ( ACS ‘ ( Base ‘ 𝑊 ) ) ) |
12 |
11
|
acsmred |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑊 ) ∈ ( Moore ‘ ( Base ‘ 𝑊 ) ) ) |
13 |
|
eqid |
⊢ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) = ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) |
14 |
10
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝒫 ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑧 ∈ ( ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥 ∪ { 𝑦 } ) ) ∖ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑥 ) ) 𝑦 ∈ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥 ∪ { 𝑧 } ) ) ) |
15 |
6 7 8 13 1
|
lbsacsbs |
⊢ ( 𝑊 ∈ LVec → ( 𝑆 ∈ 𝐽 ↔ ( 𝑆 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 ) = ( Base ‘ 𝑊 ) ) ) ) |
16 |
15
|
biimpa |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) → ( 𝑆 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 ) = ( Base ‘ 𝑊 ) ) ) |
17 |
2 3 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 ) = ( Base ‘ 𝑊 ) ) ) |
18 |
17
|
simpld |
⊢ ( 𝜑 → 𝑆 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ) |
19 |
6 7 8 13 1
|
lbsacsbs |
⊢ ( 𝑊 ∈ LVec → ( 𝑇 ∈ 𝐽 ↔ ( 𝑇 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 ) = ( Base ‘ 𝑊 ) ) ) ) |
20 |
19
|
biimpa |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑇 ∈ 𝐽 ) → ( 𝑇 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 ) = ( Base ‘ 𝑊 ) ) ) |
21 |
2 4 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 ) = ( Base ‘ 𝑊 ) ) ) |
22 |
21
|
simpld |
⊢ ( 𝜑 → 𝑇 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ) |
23 |
17
|
simprd |
⊢ ( 𝜑 → ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 ) = ( Base ‘ 𝑊 ) ) |
24 |
21
|
simprd |
⊢ ( 𝜑 → ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 ) = ( Base ‘ 𝑊 ) ) |
25 |
23 24
|
eqtr4d |
⊢ ( 𝜑 → ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 ) = ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 ) ) |
26 |
12 7 13 14 18 22 5 25
|
mreexfidimd |
⊢ ( 𝜑 → 𝑆 ≈ 𝑇 ) |