Step |
Hyp |
Ref |
Expression |
1 |
|
mayetes3.a |
|- A e. CH |
2 |
|
mayetes3.b |
|- B e. CH |
3 |
|
mayetes3.c |
|- C e. CH |
4 |
|
mayetes3.d |
|- D e. CH |
5 |
|
mayetes3.f |
|- F e. CH |
6 |
|
mayetes3.g |
|- G e. CH |
7 |
|
mayetes3.r |
|- R e. CH |
8 |
|
mayetes3.ac |
|- A C_ ( _|_ ` C ) |
9 |
|
mayetes3.af |
|- A C_ ( _|_ ` F ) |
10 |
|
mayetes3.cf |
|- C C_ ( _|_ ` F ) |
11 |
|
mayetes3.ab |
|- A C_ ( _|_ ` B ) |
12 |
|
mayetes3.cd |
|- C C_ ( _|_ ` D ) |
13 |
|
mayetes3.fg |
|- F C_ ( _|_ ` G ) |
14 |
|
mayetes3.rx |
|- R C_ ( _|_ ` X ) |
15 |
|
mayetes3.x |
|- X = ( ( A vH C ) vH F ) |
16 |
|
mayetes3.y |
|- Y = ( ( ( A vH B ) i^i ( C vH D ) ) i^i ( F vH G ) ) |
17 |
|
mayetes3.z |
|- Z = ( ( B vH D ) vH G ) |
18 |
1 3
|
chjcli |
|- ( A vH C ) e. CH |
19 |
18 5
|
chjcli |
|- ( ( A vH C ) vH F ) e. CH |
20 |
19 7
|
chjcomi |
|- ( ( ( A vH C ) vH F ) vH R ) = ( R vH ( ( A vH C ) vH F ) ) |
21 |
20
|
eqimssi |
|- ( ( ( A vH C ) vH F ) vH R ) C_ ( R vH ( ( A vH C ) vH F ) ) |
22 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
23 |
22 7
|
chub1i |
|- ( A vH B ) C_ ( ( A vH B ) vH R ) |
24 |
1 2 7
|
chjassi |
|- ( ( A vH B ) vH R ) = ( A vH ( B vH R ) ) |
25 |
23 24
|
sseqtri |
|- ( A vH B ) C_ ( A vH ( B vH R ) ) |
26 |
2 7
|
chjcli |
|- ( B vH R ) e. CH |
27 |
1 26
|
chjcli |
|- ( A vH ( B vH R ) ) e. CH |
28 |
27 7
|
chub2i |
|- ( A vH ( B vH R ) ) C_ ( R vH ( A vH ( B vH R ) ) ) |
29 |
25 28
|
sstri |
|- ( A vH B ) C_ ( R vH ( A vH ( B vH R ) ) ) |
30 |
3 4
|
chjcli |
|- ( C vH D ) e. CH |
31 |
30 7
|
chub1i |
|- ( C vH D ) C_ ( ( C vH D ) vH R ) |
32 |
3 4 7
|
chjassi |
|- ( ( C vH D ) vH R ) = ( C vH ( D vH R ) ) |
33 |
31 32
|
sseqtri |
|- ( C vH D ) C_ ( C vH ( D vH R ) ) |
34 |
4 7
|
chjcli |
|- ( D vH R ) e. CH |
35 |
3 34
|
chjcli |
|- ( C vH ( D vH R ) ) e. CH |
36 |
35 7
|
chub2i |
|- ( C vH ( D vH R ) ) C_ ( R vH ( C vH ( D vH R ) ) ) |
37 |
33 36
|
sstri |
|- ( C vH D ) C_ ( R vH ( C vH ( D vH R ) ) ) |
38 |
|
ss2in |
|- ( ( ( A vH B ) C_ ( R vH ( A vH ( B vH R ) ) ) /\ ( C vH D ) C_ ( R vH ( C vH ( D vH R ) ) ) ) -> ( ( A vH B ) i^i ( C vH D ) ) C_ ( ( R vH ( A vH ( B vH R ) ) ) i^i ( R vH ( C vH ( D vH R ) ) ) ) ) |
39 |
29 37 38
|
mp2an |
|- ( ( A vH B ) i^i ( C vH D ) ) C_ ( ( R vH ( A vH ( B vH R ) ) ) i^i ( R vH ( C vH ( D vH R ) ) ) ) |
40 |
5 6
|
chjcli |
|- ( F vH G ) e. CH |
41 |
40 7
|
chub1i |
|- ( F vH G ) C_ ( ( F vH G ) vH R ) |
42 |
5 6 7
|
chjassi |
|- ( ( F vH G ) vH R ) = ( F vH ( G vH R ) ) |
43 |
41 42
|
sseqtri |
|- ( F vH G ) C_ ( F vH ( G vH R ) ) |
44 |
6 7
|
chjcli |
|- ( G vH R ) e. CH |
45 |
5 44
|
chjcli |
|- ( F vH ( G vH R ) ) e. CH |
46 |
45 7
|
chub2i |
|- ( F vH ( G vH R ) ) C_ ( R vH ( F vH ( G vH R ) ) ) |
47 |
43 46
|
sstri |
|- ( F vH G ) C_ ( R vH ( F vH ( G vH R ) ) ) |
48 |
|
ss2in |
|- ( ( ( ( A vH B ) i^i ( C vH D ) ) C_ ( ( R vH ( A vH ( B vH R ) ) ) i^i ( R vH ( C vH ( D vH R ) ) ) ) /\ ( F vH G ) C_ ( R vH ( F vH ( G vH R ) ) ) ) -> ( ( ( A vH B ) i^i ( C vH D ) ) i^i ( F vH G ) ) C_ ( ( ( R vH ( A vH ( B vH R ) ) ) i^i ( R vH ( C vH ( D vH R ) ) ) ) i^i ( R vH ( F vH ( G vH R ) ) ) ) ) |
49 |
39 47 48
|
mp2an |
|- ( ( ( A vH B ) i^i ( C vH D ) ) i^i ( F vH G ) ) C_ ( ( ( R vH ( A vH ( B vH R ) ) ) i^i ( R vH ( C vH ( D vH R ) ) ) ) i^i ( R vH ( F vH ( G vH R ) ) ) ) |
50 |
|
ss2in |
|- ( ( ( ( ( A vH C ) vH F ) vH R ) C_ ( R vH ( ( A vH C ) vH F ) ) /\ ( ( ( A vH B ) i^i ( C vH D ) ) i^i ( F vH G ) ) C_ ( ( ( R vH ( A vH ( B vH R ) ) ) i^i ( R vH ( C vH ( D vH R ) ) ) ) i^i ( R vH ( F vH ( G vH R ) ) ) ) ) -> ( ( ( ( A vH C ) vH F ) vH R ) i^i ( ( ( A vH B ) i^i ( C vH D ) ) i^i ( F vH G ) ) ) C_ ( ( R vH ( ( A vH C ) vH F ) ) i^i ( ( ( R vH ( A vH ( B vH R ) ) ) i^i ( R vH ( C vH ( D vH R ) ) ) ) i^i ( R vH ( F vH ( G vH R ) ) ) ) ) ) |
51 |
21 49 50
|
mp2an |
|- ( ( ( ( A vH C ) vH F ) vH R ) i^i ( ( ( A vH B ) i^i ( C vH D ) ) i^i ( F vH G ) ) ) C_ ( ( R vH ( ( A vH C ) vH F ) ) i^i ( ( ( R vH ( A vH ( B vH R ) ) ) i^i ( R vH ( C vH ( D vH R ) ) ) ) i^i ( R vH ( F vH ( G vH R ) ) ) ) ) |
52 |
27 35
|
chincli |
|- ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) e. CH |
53 |
52 45
|
chincli |
|- ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) e. CH |
54 |
15 19
|
eqeltri |
|- X e. CH |
55 |
54
|
choccli |
|- ( _|_ ` X ) e. CH |
56 |
7 55 14
|
lecmii |
|- R C_H ( _|_ ` X ) |
57 |
7 54
|
cmcm2i |
|- ( R C_H X <-> R C_H ( _|_ ` X ) ) |
58 |
56 57
|
mpbir |
|- R C_H X |
59 |
58 15
|
breqtri |
|- R C_H ( ( A vH C ) vH F ) |
60 |
7 2
|
chub2i |
|- R C_ ( B vH R ) |
61 |
26 1
|
chub2i |
|- ( B vH R ) C_ ( A vH ( B vH R ) ) |
62 |
60 61
|
sstri |
|- R C_ ( A vH ( B vH R ) ) |
63 |
7 27 62
|
lecmii |
|- R C_H ( A vH ( B vH R ) ) |
64 |
7 4
|
chub2i |
|- R C_ ( D vH R ) |
65 |
34 3
|
chub2i |
|- ( D vH R ) C_ ( C vH ( D vH R ) ) |
66 |
64 65
|
sstri |
|- R C_ ( C vH ( D vH R ) ) |
67 |
7 35 66
|
lecmii |
|- R C_H ( C vH ( D vH R ) ) |
68 |
7 27 35 63 67
|
cm2mi |
|- R C_H ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) |
69 |
7 6
|
chub2i |
|- R C_ ( G vH R ) |
70 |
44 5
|
chub2i |
|- ( G vH R ) C_ ( F vH ( G vH R ) ) |
71 |
69 70
|
sstri |
|- R C_ ( F vH ( G vH R ) ) |
72 |
7 45 71
|
lecmii |
|- R C_H ( F vH ( G vH R ) ) |
73 |
7 52 45 68 72
|
cm2mi |
|- R C_H ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) |
74 |
7 19 53 59 73
|
fh3i |
|- ( R vH ( ( ( A vH C ) vH F ) i^i ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) ) ) = ( ( R vH ( ( A vH C ) vH F ) ) i^i ( R vH ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) ) ) |
75 |
7 52 45 68 72
|
fh3i |
|- ( R vH ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) ) = ( ( R vH ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) ) i^i ( R vH ( F vH ( G vH R ) ) ) ) |
76 |
7 27 35 63 67
|
fh3i |
|- ( R vH ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) ) = ( ( R vH ( A vH ( B vH R ) ) ) i^i ( R vH ( C vH ( D vH R ) ) ) ) |
77 |
76
|
ineq1i |
|- ( ( R vH ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) ) i^i ( R vH ( F vH ( G vH R ) ) ) ) = ( ( ( R vH ( A vH ( B vH R ) ) ) i^i ( R vH ( C vH ( D vH R ) ) ) ) i^i ( R vH ( F vH ( G vH R ) ) ) ) |
78 |
75 77
|
eqtri |
|- ( R vH ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) ) = ( ( ( R vH ( A vH ( B vH R ) ) ) i^i ( R vH ( C vH ( D vH R ) ) ) ) i^i ( R vH ( F vH ( G vH R ) ) ) ) |
79 |
78
|
ineq2i |
|- ( ( R vH ( ( A vH C ) vH F ) ) i^i ( R vH ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) ) ) = ( ( R vH ( ( A vH C ) vH F ) ) i^i ( ( ( R vH ( A vH ( B vH R ) ) ) i^i ( R vH ( C vH ( D vH R ) ) ) ) i^i ( R vH ( F vH ( G vH R ) ) ) ) ) |
80 |
74 79
|
eqtr2i |
|- ( ( R vH ( ( A vH C ) vH F ) ) i^i ( ( ( R vH ( A vH ( B vH R ) ) ) i^i ( R vH ( C vH ( D vH R ) ) ) ) i^i ( R vH ( F vH ( G vH R ) ) ) ) ) = ( R vH ( ( ( A vH C ) vH F ) i^i ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) ) ) |
81 |
51 80
|
sseqtri |
|- ( ( ( ( A vH C ) vH F ) vH R ) i^i ( ( ( A vH B ) i^i ( C vH D ) ) i^i ( F vH G ) ) ) C_ ( R vH ( ( ( A vH C ) vH F ) i^i ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) ) ) |
82 |
2 4
|
chjcli |
|- ( B vH D ) e. CH |
83 |
82 6
|
chjcli |
|- ( ( B vH D ) vH G ) e. CH |
84 |
7 83
|
chub2i |
|- R C_ ( ( ( B vH D ) vH G ) vH R ) |
85 |
1 3
|
chub1i |
|- A C_ ( A vH C ) |
86 |
18 5
|
chub1i |
|- ( A vH C ) C_ ( ( A vH C ) vH F ) |
87 |
86 15
|
sseqtrri |
|- ( A vH C ) C_ X |
88 |
85 87
|
sstri |
|- A C_ X |
89 |
1 54
|
chsscon3i |
|- ( A C_ X <-> ( _|_ ` X ) C_ ( _|_ ` A ) ) |
90 |
88 89
|
mpbi |
|- ( _|_ ` X ) C_ ( _|_ ` A ) |
91 |
14 90
|
sstri |
|- R C_ ( _|_ ` A ) |
92 |
7 1
|
chsscon2i |
|- ( R C_ ( _|_ ` A ) <-> A C_ ( _|_ ` R ) ) |
93 |
91 92
|
mpbi |
|- A C_ ( _|_ ` R ) |
94 |
11 93
|
ssini |
|- A C_ ( ( _|_ ` B ) i^i ( _|_ ` R ) ) |
95 |
2 7
|
chdmj1i |
|- ( _|_ ` ( B vH R ) ) = ( ( _|_ ` B ) i^i ( _|_ ` R ) ) |
96 |
94 95
|
sseqtrri |
|- A C_ ( _|_ ` ( B vH R ) ) |
97 |
3 1
|
chub2i |
|- C C_ ( A vH C ) |
98 |
97 87
|
sstri |
|- C C_ X |
99 |
3 54
|
chsscon3i |
|- ( C C_ X <-> ( _|_ ` X ) C_ ( _|_ ` C ) ) |
100 |
98 99
|
mpbi |
|- ( _|_ ` X ) C_ ( _|_ ` C ) |
101 |
14 100
|
sstri |
|- R C_ ( _|_ ` C ) |
102 |
7 3
|
chsscon2i |
|- ( R C_ ( _|_ ` C ) <-> C C_ ( _|_ ` R ) ) |
103 |
101 102
|
mpbi |
|- C C_ ( _|_ ` R ) |
104 |
12 103
|
ssini |
|- C C_ ( ( _|_ ` D ) i^i ( _|_ ` R ) ) |
105 |
4 7
|
chdmj1i |
|- ( _|_ ` ( D vH R ) ) = ( ( _|_ ` D ) i^i ( _|_ ` R ) ) |
106 |
104 105
|
sseqtrri |
|- C C_ ( _|_ ` ( D vH R ) ) |
107 |
5 18
|
chub2i |
|- F C_ ( ( A vH C ) vH F ) |
108 |
107 15
|
sseqtrri |
|- F C_ X |
109 |
5 54
|
chsscon3i |
|- ( F C_ X <-> ( _|_ ` X ) C_ ( _|_ ` F ) ) |
110 |
108 109
|
mpbi |
|- ( _|_ ` X ) C_ ( _|_ ` F ) |
111 |
14 110
|
sstri |
|- R C_ ( _|_ ` F ) |
112 |
7 5
|
chsscon2i |
|- ( R C_ ( _|_ ` F ) <-> F C_ ( _|_ ` R ) ) |
113 |
111 112
|
mpbi |
|- F C_ ( _|_ ` R ) |
114 |
13 113
|
ssini |
|- F C_ ( ( _|_ ` G ) i^i ( _|_ ` R ) ) |
115 |
6 7
|
chdmj1i |
|- ( _|_ ` ( G vH R ) ) = ( ( _|_ ` G ) i^i ( _|_ ` R ) ) |
116 |
114 115
|
sseqtrri |
|- F C_ ( _|_ ` ( G vH R ) ) |
117 |
|
eqid |
|- ( ( A vH C ) vH F ) = ( ( A vH C ) vH F ) |
118 |
|
eqid |
|- ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) = ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) |
119 |
82 6 7
|
chjjdiri |
|- ( ( ( B vH D ) vH G ) vH R ) = ( ( ( B vH D ) vH R ) vH ( G vH R ) ) |
120 |
2 4 7
|
chjjdiri |
|- ( ( B vH D ) vH R ) = ( ( B vH R ) vH ( D vH R ) ) |
121 |
120
|
oveq1i |
|- ( ( ( B vH D ) vH R ) vH ( G vH R ) ) = ( ( ( B vH R ) vH ( D vH R ) ) vH ( G vH R ) ) |
122 |
119 121
|
eqtri |
|- ( ( ( B vH D ) vH G ) vH R ) = ( ( ( B vH R ) vH ( D vH R ) ) vH ( G vH R ) ) |
123 |
1 26 3 34 5 44 8 9 10 96 106 116 117 118 122
|
mayete3i |
|- ( ( ( A vH C ) vH F ) i^i ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) ) C_ ( ( ( B vH D ) vH G ) vH R ) |
124 |
19 53
|
chincli |
|- ( ( ( A vH C ) vH F ) i^i ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) ) e. CH |
125 |
83 7
|
chjcli |
|- ( ( ( B vH D ) vH G ) vH R ) e. CH |
126 |
7 124 125
|
chlubii |
|- ( ( R C_ ( ( ( B vH D ) vH G ) vH R ) /\ ( ( ( A vH C ) vH F ) i^i ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) ) C_ ( ( ( B vH D ) vH G ) vH R ) ) -> ( R vH ( ( ( A vH C ) vH F ) i^i ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) ) ) C_ ( ( ( B vH D ) vH G ) vH R ) ) |
127 |
84 123 126
|
mp2an |
|- ( R vH ( ( ( A vH C ) vH F ) i^i ( ( ( A vH ( B vH R ) ) i^i ( C vH ( D vH R ) ) ) i^i ( F vH ( G vH R ) ) ) ) ) C_ ( ( ( B vH D ) vH G ) vH R ) |
128 |
81 127
|
sstri |
|- ( ( ( ( A vH C ) vH F ) vH R ) i^i ( ( ( A vH B ) i^i ( C vH D ) ) i^i ( F vH G ) ) ) C_ ( ( ( B vH D ) vH G ) vH R ) |
129 |
15
|
oveq1i |
|- ( X vH R ) = ( ( ( A vH C ) vH F ) vH R ) |
130 |
129 16
|
ineq12i |
|- ( ( X vH R ) i^i Y ) = ( ( ( ( A vH C ) vH F ) vH R ) i^i ( ( ( A vH B ) i^i ( C vH D ) ) i^i ( F vH G ) ) ) |
131 |
17
|
oveq1i |
|- ( Z vH R ) = ( ( ( B vH D ) vH G ) vH R ) |
132 |
128 130 131
|
3sstr4i |
|- ( ( X vH R ) i^i Y ) C_ ( Z vH R ) |