Step |
Hyp |
Ref |
Expression |
1 |
|
mayete3.a |
|- A e. CH |
2 |
|
mayete3.b |
|- B e. CH |
3 |
|
mayete3.c |
|- C e. CH |
4 |
|
mayete3.d |
|- D e. CH |
5 |
|
mayete3.f |
|- F e. CH |
6 |
|
mayete3.g |
|- G e. CH |
7 |
|
mayete3.ac |
|- A C_ ( _|_ ` C ) |
8 |
|
mayete3.af |
|- A C_ ( _|_ ` F ) |
9 |
|
mayete3.cf |
|- C C_ ( _|_ ` F ) |
10 |
|
mayete3.ab |
|- A C_ ( _|_ ` B ) |
11 |
|
mayete3.cd |
|- C C_ ( _|_ ` D ) |
12 |
|
mayete3.fg |
|- F C_ ( _|_ ` G ) |
13 |
|
mayete3.x |
|- X = ( ( A vH C ) vH F ) |
14 |
|
mayete3.y |
|- Y = ( ( ( A vH B ) i^i ( C vH D ) ) i^i ( F vH G ) ) |
15 |
|
mayete3.z |
|- Z = ( ( B vH D ) vH G ) |
16 |
|
elin |
|- ( x e. ( X i^i Y ) <-> ( x e. X /\ x e. Y ) ) |
17 |
1 3
|
chjcli |
|- ( A vH C ) e. CH |
18 |
17 5
|
chjcli |
|- ( ( A vH C ) vH F ) e. CH |
19 |
18
|
cheli |
|- ( x e. ( ( A vH C ) vH F ) -> x e. ~H ) |
20 |
19 13
|
eleq2s |
|- ( x e. X -> x e. ~H ) |
21 |
20
|
adantr |
|- ( ( x e. X /\ x e. Y ) -> x e. ~H ) |
22 |
16 21
|
sylbi |
|- ( x e. ( X i^i Y ) -> x e. ~H ) |
23 |
|
ax-hvmulid |
|- ( x e. ~H -> ( 1 .h x ) = x ) |
24 |
|
2cn |
|- 2 e. CC |
25 |
|
2ne0 |
|- 2 =/= 0 |
26 |
|
recid2 |
|- ( ( 2 e. CC /\ 2 =/= 0 ) -> ( ( 1 / 2 ) x. 2 ) = 1 ) |
27 |
24 25 26
|
mp2an |
|- ( ( 1 / 2 ) x. 2 ) = 1 |
28 |
27
|
oveq1i |
|- ( ( ( 1 / 2 ) x. 2 ) .h x ) = ( 1 .h x ) |
29 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
30 |
|
ax-hvmulass |
|- ( ( ( 1 / 2 ) e. CC /\ 2 e. CC /\ x e. ~H ) -> ( ( ( 1 / 2 ) x. 2 ) .h x ) = ( ( 1 / 2 ) .h ( 2 .h x ) ) ) |
31 |
29 24 30
|
mp3an12 |
|- ( x e. ~H -> ( ( ( 1 / 2 ) x. 2 ) .h x ) = ( ( 1 / 2 ) .h ( 2 .h x ) ) ) |
32 |
28 31
|
eqtr3id |
|- ( x e. ~H -> ( 1 .h x ) = ( ( 1 / 2 ) .h ( 2 .h x ) ) ) |
33 |
23 32
|
eqtr3d |
|- ( x e. ~H -> x = ( ( 1 / 2 ) .h ( 2 .h x ) ) ) |
34 |
22 33
|
syl |
|- ( x e. ( X i^i Y ) -> x = ( ( 1 / 2 ) .h ( 2 .h x ) ) ) |
35 |
|
hv2times |
|- ( x e. ~H -> ( 2 .h x ) = ( x +h x ) ) |
36 |
35
|
oveq1d |
|- ( x e. ~H -> ( ( 2 .h x ) +h x ) = ( ( x +h x ) +h x ) ) |
37 |
22 36
|
syl |
|- ( x e. ( X i^i Y ) -> ( ( 2 .h x ) +h x ) = ( ( x +h x ) +h x ) ) |
38 |
|
inss2 |
|- ( X i^i Y ) C_ Y |
39 |
38
|
sseli |
|- ( x e. ( X i^i Y ) -> x e. Y ) |
40 |
14
|
elin2 |
|- ( x e. Y <-> ( x e. ( ( A vH B ) i^i ( C vH D ) ) /\ x e. ( F vH G ) ) ) |
41 |
|
elin |
|- ( x e. ( ( A vH B ) i^i ( C vH D ) ) <-> ( x e. ( A vH B ) /\ x e. ( C vH D ) ) ) |
42 |
1 2
|
pjdsi |
|- ( ( x e. ( A vH B ) /\ A C_ ( _|_ ` B ) ) -> x = ( ( ( projh ` A ) ` x ) +h ( ( projh ` B ) ` x ) ) ) |
43 |
10 42
|
mpan2 |
|- ( x e. ( A vH B ) -> x = ( ( ( projh ` A ) ` x ) +h ( ( projh ` B ) ` x ) ) ) |
44 |
3 4
|
pjdsi |
|- ( ( x e. ( C vH D ) /\ C C_ ( _|_ ` D ) ) -> x = ( ( ( projh ` C ) ` x ) +h ( ( projh ` D ) ` x ) ) ) |
45 |
11 44
|
mpan2 |
|- ( x e. ( C vH D ) -> x = ( ( ( projh ` C ) ` x ) +h ( ( projh ` D ) ` x ) ) ) |
46 |
43 45
|
oveqan12d |
|- ( ( x e. ( A vH B ) /\ x e. ( C vH D ) ) -> ( x +h x ) = ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` B ) ` x ) ) +h ( ( ( projh ` C ) ` x ) +h ( ( projh ` D ) ` x ) ) ) ) |
47 |
41 46
|
sylbi |
|- ( x e. ( ( A vH B ) i^i ( C vH D ) ) -> ( x +h x ) = ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` B ) ` x ) ) +h ( ( ( projh ` C ) ` x ) +h ( ( projh ` D ) ` x ) ) ) ) |
48 |
|
inss1 |
|- ( ( A vH B ) i^i ( C vH D ) ) C_ ( A vH B ) |
49 |
48
|
sseli |
|- ( x e. ( ( A vH B ) i^i ( C vH D ) ) -> x e. ( A vH B ) ) |
50 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
51 |
50
|
cheli |
|- ( x e. ( A vH B ) -> x e. ~H ) |
52 |
1
|
pjhcli |
|- ( x e. ~H -> ( ( projh ` A ) ` x ) e. ~H ) |
53 |
2
|
pjhcli |
|- ( x e. ~H -> ( ( projh ` B ) ` x ) e. ~H ) |
54 |
3
|
pjhcli |
|- ( x e. ~H -> ( ( projh ` C ) ` x ) e. ~H ) |
55 |
4
|
pjhcli |
|- ( x e. ~H -> ( ( projh ` D ) ` x ) e. ~H ) |
56 |
|
hvadd4 |
|- ( ( ( ( ( projh ` A ) ` x ) e. ~H /\ ( ( projh ` B ) ` x ) e. ~H ) /\ ( ( ( projh ` C ) ` x ) e. ~H /\ ( ( projh ` D ) ` x ) e. ~H ) ) -> ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` B ) ` x ) ) +h ( ( ( projh ` C ) ` x ) +h ( ( projh ` D ) ` x ) ) ) = ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) ) ) |
57 |
52 53 54 55 56
|
syl22anc |
|- ( x e. ~H -> ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` B ) ` x ) ) +h ( ( ( projh ` C ) ` x ) +h ( ( projh ` D ) ` x ) ) ) = ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) ) ) |
58 |
49 51 57
|
3syl |
|- ( x e. ( ( A vH B ) i^i ( C vH D ) ) -> ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` B ) ` x ) ) +h ( ( ( projh ` C ) ` x ) +h ( ( projh ` D ) ` x ) ) ) = ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) ) ) |
59 |
47 58
|
eqtrd |
|- ( x e. ( ( A vH B ) i^i ( C vH D ) ) -> ( x +h x ) = ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) ) ) |
60 |
5 6
|
pjdsi |
|- ( ( x e. ( F vH G ) /\ F C_ ( _|_ ` G ) ) -> x = ( ( ( projh ` F ) ` x ) +h ( ( projh ` G ) ` x ) ) ) |
61 |
12 60
|
mpan2 |
|- ( x e. ( F vH G ) -> x = ( ( ( projh ` F ) ` x ) +h ( ( projh ` G ) ` x ) ) ) |
62 |
59 61
|
oveqan12d |
|- ( ( x e. ( ( A vH B ) i^i ( C vH D ) ) /\ x e. ( F vH G ) ) -> ( ( x +h x ) +h x ) = ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) ) +h ( ( ( projh ` F ) ` x ) +h ( ( projh ` G ) ` x ) ) ) ) |
63 |
40 62
|
sylbi |
|- ( x e. Y -> ( ( x +h x ) +h x ) = ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) ) +h ( ( ( projh ` F ) ` x ) +h ( ( projh ` G ) ` x ) ) ) ) |
64 |
39 63
|
syl |
|- ( x e. ( X i^i Y ) -> ( ( x +h x ) +h x ) = ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) ) +h ( ( ( projh ` F ) ` x ) +h ( ( projh ` G ) ` x ) ) ) ) |
65 |
|
hvaddcl |
|- ( ( ( ( projh ` A ) ` x ) e. ~H /\ ( ( projh ` C ) ` x ) e. ~H ) -> ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) e. ~H ) |
66 |
52 54 65
|
syl2anc |
|- ( x e. ~H -> ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) e. ~H ) |
67 |
|
hvaddcl |
|- ( ( ( ( projh ` B ) ` x ) e. ~H /\ ( ( projh ` D ) ` x ) e. ~H ) -> ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) e. ~H ) |
68 |
53 55 67
|
syl2anc |
|- ( x e. ~H -> ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) e. ~H ) |
69 |
5
|
pjhcli |
|- ( x e. ~H -> ( ( projh ` F ) ` x ) e. ~H ) |
70 |
6
|
pjhcli |
|- ( x e. ~H -> ( ( projh ` G ) ` x ) e. ~H ) |
71 |
|
hvadd4 |
|- ( ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) e. ~H /\ ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) e. ~H ) /\ ( ( ( projh ` F ) ` x ) e. ~H /\ ( ( projh ` G ) ` x ) e. ~H ) ) -> ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) ) +h ( ( ( projh ` F ) ` x ) +h ( ( projh ` G ) ` x ) ) ) = ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) +h ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) ) ) |
72 |
66 68 69 70 71
|
syl22anc |
|- ( x e. ~H -> ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) ) +h ( ( ( projh ` F ) ` x ) +h ( ( projh ` G ) ` x ) ) ) = ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) +h ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) ) ) |
73 |
22 72
|
syl |
|- ( x e. ( X i^i Y ) -> ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) ) +h ( ( ( projh ` F ) ` x ) +h ( ( projh ` G ) ` x ) ) ) = ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) +h ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) ) ) |
74 |
37 64 73
|
3eqtrd |
|- ( x e. ( X i^i Y ) -> ( ( 2 .h x ) +h x ) = ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) +h ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) ) ) |
75 |
|
inss1 |
|- ( X i^i Y ) C_ X |
76 |
75
|
sseli |
|- ( x e. ( X i^i Y ) -> x e. X ) |
77 |
76 13
|
eleqtrdi |
|- ( x e. ( X i^i Y ) -> x e. ( ( A vH C ) vH F ) ) |
78 |
1 3 5
|
pjds3i |
|- ( ( ( x e. ( ( A vH C ) vH F ) /\ A C_ ( _|_ ` C ) ) /\ ( A C_ ( _|_ ` F ) /\ C C_ ( _|_ ` F ) ) ) -> x = ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) ) |
79 |
8 9 78
|
mpanr12 |
|- ( ( x e. ( ( A vH C ) vH F ) /\ A C_ ( _|_ ` C ) ) -> x = ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) ) |
80 |
77 7 79
|
sylancl |
|- ( x e. ( X i^i Y ) -> x = ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) ) |
81 |
74 80
|
oveq12d |
|- ( x e. ( X i^i Y ) -> ( ( ( 2 .h x ) +h x ) -h x ) = ( ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) +h ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) ) -h ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) ) ) |
82 |
|
hvmulcl |
|- ( ( 2 e. CC /\ x e. ~H ) -> ( 2 .h x ) e. ~H ) |
83 |
24 82
|
mpan |
|- ( x e. ~H -> ( 2 .h x ) e. ~H ) |
84 |
|
hvpncan |
|- ( ( ( 2 .h x ) e. ~H /\ x e. ~H ) -> ( ( ( 2 .h x ) +h x ) -h x ) = ( 2 .h x ) ) |
85 |
83 84
|
mpancom |
|- ( x e. ~H -> ( ( ( 2 .h x ) +h x ) -h x ) = ( 2 .h x ) ) |
86 |
22 85
|
syl |
|- ( x e. ( X i^i Y ) -> ( ( ( 2 .h x ) +h x ) -h x ) = ( 2 .h x ) ) |
87 |
81 86
|
eqtr3d |
|- ( x e. ( X i^i Y ) -> ( ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) +h ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) ) -h ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) ) = ( 2 .h x ) ) |
88 |
|
hvaddcl |
|- ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) e. ~H /\ ( ( projh ` F ) ` x ) e. ~H ) -> ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) e. ~H ) |
89 |
66 69 88
|
syl2anc |
|- ( x e. ~H -> ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) e. ~H ) |
90 |
|
hvaddcl |
|- ( ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) e. ~H /\ ( ( projh ` G ) ` x ) e. ~H ) -> ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) e. ~H ) |
91 |
68 70 90
|
syl2anc |
|- ( x e. ~H -> ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) e. ~H ) |
92 |
|
hvpncan2 |
|- ( ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) e. ~H /\ ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) e. ~H ) -> ( ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) +h ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) ) -h ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) ) = ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) ) |
93 |
89 91 92
|
syl2anc |
|- ( x e. ~H -> ( ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) +h ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) ) -h ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) ) = ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) ) |
94 |
22 93
|
syl |
|- ( x e. ( X i^i Y ) -> ( ( ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) +h ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) ) -h ( ( ( ( projh ` A ) ` x ) +h ( ( projh ` C ) ` x ) ) +h ( ( projh ` F ) ` x ) ) ) = ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) ) |
95 |
87 94
|
eqtr3d |
|- ( x e. ( X i^i Y ) -> ( 2 .h x ) = ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) ) |
96 |
2
|
pjcli |
|- ( x e. ~H -> ( ( projh ` B ) ` x ) e. B ) |
97 |
4
|
pjcli |
|- ( x e. ~H -> ( ( projh ` D ) ` x ) e. D ) |
98 |
2
|
chshii |
|- B e. SH |
99 |
4
|
chshii |
|- D e. SH |
100 |
98 99
|
shsvai |
|- ( ( ( ( projh ` B ) ` x ) e. B /\ ( ( projh ` D ) ` x ) e. D ) -> ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) e. ( B +H D ) ) |
101 |
96 97 100
|
syl2anc |
|- ( x e. ~H -> ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) e. ( B +H D ) ) |
102 |
6
|
pjcli |
|- ( x e. ~H -> ( ( projh ` G ) ` x ) e. G ) |
103 |
98 99
|
shscli |
|- ( B +H D ) e. SH |
104 |
6
|
chshii |
|- G e. SH |
105 |
103 104
|
shsvai |
|- ( ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) e. ( B +H D ) /\ ( ( projh ` G ) ` x ) e. G ) -> ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) e. ( ( B +H D ) +H G ) ) |
106 |
101 102 105
|
syl2anc |
|- ( x e. ~H -> ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) e. ( ( B +H D ) +H G ) ) |
107 |
22 106
|
syl |
|- ( x e. ( X i^i Y ) -> ( ( ( ( projh ` B ) ` x ) +h ( ( projh ` D ) ` x ) ) +h ( ( projh ` G ) ` x ) ) e. ( ( B +H D ) +H G ) ) |
108 |
95 107
|
eqeltrd |
|- ( x e. ( X i^i Y ) -> ( 2 .h x ) e. ( ( B +H D ) +H G ) ) |
109 |
103 104
|
shscli |
|- ( ( B +H D ) +H G ) e. SH |
110 |
|
shmulcl |
|- ( ( ( ( B +H D ) +H G ) e. SH /\ ( 1 / 2 ) e. CC /\ ( 2 .h x ) e. ( ( B +H D ) +H G ) ) -> ( ( 1 / 2 ) .h ( 2 .h x ) ) e. ( ( B +H D ) +H G ) ) |
111 |
109 29 110
|
mp3an12 |
|- ( ( 2 .h x ) e. ( ( B +H D ) +H G ) -> ( ( 1 / 2 ) .h ( 2 .h x ) ) e. ( ( B +H D ) +H G ) ) |
112 |
108 111
|
syl |
|- ( x e. ( X i^i Y ) -> ( ( 1 / 2 ) .h ( 2 .h x ) ) e. ( ( B +H D ) +H G ) ) |
113 |
34 112
|
eqeltrd |
|- ( x e. ( X i^i Y ) -> x e. ( ( B +H D ) +H G ) ) |
114 |
113
|
ssriv |
|- ( X i^i Y ) C_ ( ( B +H D ) +H G ) |
115 |
2 4
|
chsleji |
|- ( B +H D ) C_ ( B vH D ) |
116 |
2 4
|
chjcli |
|- ( B vH D ) e. CH |
117 |
116
|
chshii |
|- ( B vH D ) e. SH |
118 |
103 117 104
|
shlessi |
|- ( ( B +H D ) C_ ( B vH D ) -> ( ( B +H D ) +H G ) C_ ( ( B vH D ) +H G ) ) |
119 |
115 118
|
ax-mp |
|- ( ( B +H D ) +H G ) C_ ( ( B vH D ) +H G ) |
120 |
114 119
|
sstri |
|- ( X i^i Y ) C_ ( ( B vH D ) +H G ) |
121 |
116 6
|
chsleji |
|- ( ( B vH D ) +H G ) C_ ( ( B vH D ) vH G ) |
122 |
120 121
|
sstri |
|- ( X i^i Y ) C_ ( ( B vH D ) vH G ) |
123 |
122 15
|
sseqtrri |
|- ( X i^i Y ) C_ Z |