Step |
Hyp |
Ref |
Expression |
1 |
|
mayete3.a |
⊢ 𝐴 ∈ Cℋ |
2 |
|
mayete3.b |
⊢ 𝐵 ∈ Cℋ |
3 |
|
mayete3.c |
⊢ 𝐶 ∈ Cℋ |
4 |
|
mayete3.d |
⊢ 𝐷 ∈ Cℋ |
5 |
|
mayete3.f |
⊢ 𝐹 ∈ Cℋ |
6 |
|
mayete3.g |
⊢ 𝐺 ∈ Cℋ |
7 |
|
mayete3.ac |
⊢ 𝐴 ⊆ ( ⊥ ‘ 𝐶 ) |
8 |
|
mayete3.af |
⊢ 𝐴 ⊆ ( ⊥ ‘ 𝐹 ) |
9 |
|
mayete3.cf |
⊢ 𝐶 ⊆ ( ⊥ ‘ 𝐹 ) |
10 |
|
mayete3.ab |
⊢ 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) |
11 |
|
mayete3.cd |
⊢ 𝐶 ⊆ ( ⊥ ‘ 𝐷 ) |
12 |
|
mayete3.fg |
⊢ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) |
13 |
|
mayete3.x |
⊢ 𝑋 = ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐹 ) |
14 |
|
mayete3.y |
⊢ 𝑌 = ( ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐶 ∨ℋ 𝐷 ) ) ∩ ( 𝐹 ∨ℋ 𝐺 ) ) |
15 |
|
mayete3.z |
⊢ 𝑍 = ( ( 𝐵 ∨ℋ 𝐷 ) ∨ℋ 𝐺 ) |
16 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑌 ) ) |
17 |
1 3
|
chjcli |
⊢ ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ |
18 |
17 5
|
chjcli |
⊢ ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐹 ) ∈ Cℋ |
19 |
18
|
cheli |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐹 ) → 𝑥 ∈ ℋ ) |
20 |
19 13
|
eleq2s |
⊢ ( 𝑥 ∈ 𝑋 → 𝑥 ∈ ℋ ) |
21 |
20
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ ℋ ) |
22 |
16 21
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → 𝑥 ∈ ℋ ) |
23 |
|
ax-hvmulid |
⊢ ( 𝑥 ∈ ℋ → ( 1 ·ℎ 𝑥 ) = 𝑥 ) |
24 |
|
2cn |
⊢ 2 ∈ ℂ |
25 |
|
2ne0 |
⊢ 2 ≠ 0 |
26 |
|
recid2 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 1 / 2 ) · 2 ) = 1 ) |
27 |
24 25 26
|
mp2an |
⊢ ( ( 1 / 2 ) · 2 ) = 1 |
28 |
27
|
oveq1i |
⊢ ( ( ( 1 / 2 ) · 2 ) ·ℎ 𝑥 ) = ( 1 ·ℎ 𝑥 ) |
29 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
30 |
|
ax-hvmulass |
⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( ( 1 / 2 ) · 2 ) ·ℎ 𝑥 ) = ( ( 1 / 2 ) ·ℎ ( 2 ·ℎ 𝑥 ) ) ) |
31 |
29 24 30
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 1 / 2 ) · 2 ) ·ℎ 𝑥 ) = ( ( 1 / 2 ) ·ℎ ( 2 ·ℎ 𝑥 ) ) ) |
32 |
28 31
|
eqtr3id |
⊢ ( 𝑥 ∈ ℋ → ( 1 ·ℎ 𝑥 ) = ( ( 1 / 2 ) ·ℎ ( 2 ·ℎ 𝑥 ) ) ) |
33 |
23 32
|
eqtr3d |
⊢ ( 𝑥 ∈ ℋ → 𝑥 = ( ( 1 / 2 ) ·ℎ ( 2 ·ℎ 𝑥 ) ) ) |
34 |
22 33
|
syl |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → 𝑥 = ( ( 1 / 2 ) ·ℎ ( 2 ·ℎ 𝑥 ) ) ) |
35 |
|
hv2times |
⊢ ( 𝑥 ∈ ℋ → ( 2 ·ℎ 𝑥 ) = ( 𝑥 +ℎ 𝑥 ) ) |
36 |
35
|
oveq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( 2 ·ℎ 𝑥 ) +ℎ 𝑥 ) = ( ( 𝑥 +ℎ 𝑥 ) +ℎ 𝑥 ) ) |
37 |
22 36
|
syl |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → ( ( 2 ·ℎ 𝑥 ) +ℎ 𝑥 ) = ( ( 𝑥 +ℎ 𝑥 ) +ℎ 𝑥 ) ) |
38 |
|
inss2 |
⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 |
39 |
38
|
sseli |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → 𝑥 ∈ 𝑌 ) |
40 |
14
|
elin2 |
⊢ ( 𝑥 ∈ 𝑌 ↔ ( 𝑥 ∈ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐶 ∨ℋ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝐹 ∨ℋ 𝐺 ) ) ) |
41 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐶 ∨ℋ 𝐷 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 ∨ℋ 𝐷 ) ) ) |
42 |
1 2
|
pjdsi |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) → 𝑥 = ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) ) ) |
43 |
10 42
|
mpan2 |
⊢ ( 𝑥 ∈ ( 𝐴 ∨ℋ 𝐵 ) → 𝑥 = ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) ) ) |
44 |
3 4
|
pjdsi |
⊢ ( ( 𝑥 ∈ ( 𝐶 ∨ℋ 𝐷 ) ∧ 𝐶 ⊆ ( ⊥ ‘ 𝐷 ) ) → 𝑥 = ( ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) |
45 |
11 44
|
mpan2 |
⊢ ( 𝑥 ∈ ( 𝐶 ∨ℋ 𝐷 ) → 𝑥 = ( ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) |
46 |
43 45
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 ∨ℋ 𝐷 ) ) → ( 𝑥 +ℎ 𝑥 ) = ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) ) |
47 |
41 46
|
sylbi |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐶 ∨ℋ 𝐷 ) ) → ( 𝑥 +ℎ 𝑥 ) = ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) ) |
48 |
|
inss1 |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐶 ∨ℋ 𝐷 ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
49 |
48
|
sseli |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐶 ∨ℋ 𝐷 ) ) → 𝑥 ∈ ( 𝐴 ∨ℋ 𝐵 ) ) |
50 |
1 2
|
chjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
51 |
50
|
cheli |
⊢ ( 𝑥 ∈ ( 𝐴 ∨ℋ 𝐵 ) → 𝑥 ∈ ℋ ) |
52 |
1
|
pjhcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) ∈ ℋ ) |
53 |
2
|
pjhcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) ∈ ℋ ) |
54 |
3
|
pjhcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ∈ ℋ ) |
55 |
4
|
pjhcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ∈ ℋ ) |
56 |
|
hvadd4 |
⊢ ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) ∈ ℋ ) ∧ ( ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ∈ ℋ ) ) → ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) = ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) ) |
57 |
52 53 54 55 56
|
syl22anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) = ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) ) |
58 |
49 51 57
|
3syl |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐶 ∨ℋ 𝐷 ) ) → ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) = ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) ) |
59 |
47 58
|
eqtrd |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐶 ∨ℋ 𝐷 ) ) → ( 𝑥 +ℎ 𝑥 ) = ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) ) |
60 |
5 6
|
pjdsi |
⊢ ( ( 𝑥 ∈ ( 𝐹 ∨ℋ 𝐺 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) → 𝑥 = ( ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
61 |
12 60
|
mpan2 |
⊢ ( 𝑥 ∈ ( 𝐹 ∨ℋ 𝐺 ) → 𝑥 = ( ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
62 |
59 61
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐶 ∨ℋ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝐹 ∨ℋ 𝐺 ) ) → ( ( 𝑥 +ℎ 𝑥 ) +ℎ 𝑥 ) = ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) +ℎ ( ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
63 |
40 62
|
sylbi |
⊢ ( 𝑥 ∈ 𝑌 → ( ( 𝑥 +ℎ 𝑥 ) +ℎ 𝑥 ) = ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) +ℎ ( ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
64 |
39 63
|
syl |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → ( ( 𝑥 +ℎ 𝑥 ) +ℎ 𝑥 ) = ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) +ℎ ( ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
65 |
|
hvaddcl |
⊢ ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ∈ ℋ ) → ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ ℋ ) |
66 |
52 54 65
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ ℋ ) |
67 |
|
hvaddcl |
⊢ ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ∈ ℋ ) → ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ∈ ℋ ) |
68 |
53 55 67
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ∈ ℋ ) |
69 |
5
|
pjhcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ∈ ℋ ) |
70 |
6
|
pjhcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℋ ) |
71 |
|
hvadd4 |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ ℋ ∧ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ∈ ℋ ) ∧ ( ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℋ ) ) → ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) +ℎ ( ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) = ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) +ℎ ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
72 |
66 68 69 70 71
|
syl22anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) +ℎ ( ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) = ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) +ℎ ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
73 |
22 72
|
syl |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ) +ℎ ( ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) = ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) +ℎ ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
74 |
37 64 73
|
3eqtrd |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → ( ( 2 ·ℎ 𝑥 ) +ℎ 𝑥 ) = ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) +ℎ ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
75 |
|
inss1 |
⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 |
76 |
75
|
sseli |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
77 |
76 13
|
eleqtrdi |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → 𝑥 ∈ ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐹 ) ) |
78 |
1 3 5
|
pjds3i |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐹 ) ∧ 𝐴 ⊆ ( ⊥ ‘ 𝐶 ) ) ∧ ( 𝐴 ⊆ ( ⊥ ‘ 𝐹 ) ∧ 𝐶 ⊆ ( ⊥ ‘ 𝐹 ) ) ) → 𝑥 = ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) ) |
79 |
8 9 78
|
mpanr12 |
⊢ ( ( 𝑥 ∈ ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐹 ) ∧ 𝐴 ⊆ ( ⊥ ‘ 𝐶 ) ) → 𝑥 = ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) ) |
80 |
77 7 79
|
sylancl |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → 𝑥 = ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) ) |
81 |
74 80
|
oveq12d |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → ( ( ( 2 ·ℎ 𝑥 ) +ℎ 𝑥 ) −ℎ 𝑥 ) = ( ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) +ℎ ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) −ℎ ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) ) ) |
82 |
|
hvmulcl |
⊢ ( ( 2 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( 2 ·ℎ 𝑥 ) ∈ ℋ ) |
83 |
24 82
|
mpan |
⊢ ( 𝑥 ∈ ℋ → ( 2 ·ℎ 𝑥 ) ∈ ℋ ) |
84 |
|
hvpncan |
⊢ ( ( ( 2 ·ℎ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 2 ·ℎ 𝑥 ) +ℎ 𝑥 ) −ℎ 𝑥 ) = ( 2 ·ℎ 𝑥 ) ) |
85 |
83 84
|
mpancom |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 2 ·ℎ 𝑥 ) +ℎ 𝑥 ) −ℎ 𝑥 ) = ( 2 ·ℎ 𝑥 ) ) |
86 |
22 85
|
syl |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → ( ( ( 2 ·ℎ 𝑥 ) +ℎ 𝑥 ) −ℎ 𝑥 ) = ( 2 ·ℎ 𝑥 ) ) |
87 |
81 86
|
eqtr3d |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → ( ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) +ℎ ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) −ℎ ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) ) = ( 2 ·ℎ 𝑥 ) ) |
88 |
|
hvaddcl |
⊢ ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) ∈ ℋ ) |
89 |
66 69 88
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) ∈ ℋ ) |
90 |
|
hvaddcl |
⊢ ( ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℋ ) |
91 |
68 70 90
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℋ ) |
92 |
|
hvpncan2 |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) ∈ ℋ ∧ ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℋ ) → ( ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) +ℎ ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) −ℎ ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) ) = ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
93 |
89 91 92
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) +ℎ ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) −ℎ ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) ) = ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
94 |
22 93
|
syl |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → ( ( ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) +ℎ ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) −ℎ ( ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐶 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐹 ) ‘ 𝑥 ) ) ) = ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
95 |
87 94
|
eqtr3d |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → ( 2 ·ℎ 𝑥 ) = ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
96 |
2
|
pjcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) ∈ 𝐵 ) |
97 |
4
|
pjcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ∈ 𝐷 ) |
98 |
2
|
chshii |
⊢ 𝐵 ∈ Sℋ |
99 |
4
|
chshii |
⊢ 𝐷 ∈ Sℋ |
100 |
98 99
|
shsvai |
⊢ ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) ∈ 𝐵 ∧ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ∈ 𝐷 ) → ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ∈ ( 𝐵 +ℋ 𝐷 ) ) |
101 |
96 97 100
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ∈ ( 𝐵 +ℋ 𝐷 ) ) |
102 |
6
|
pjcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐺 ) |
103 |
98 99
|
shscli |
⊢ ( 𝐵 +ℋ 𝐷 ) ∈ Sℋ |
104 |
6
|
chshii |
⊢ 𝐺 ∈ Sℋ |
105 |
103 104
|
shsvai |
⊢ ( ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) ∈ ( 𝐵 +ℋ 𝐷 ) ∧ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐺 ) → ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) ) |
106 |
101 102 105
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) ) |
107 |
22 106
|
syl |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → ( ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐷 ) ‘ 𝑥 ) ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) ) |
108 |
95 107
|
eqeltrd |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → ( 2 ·ℎ 𝑥 ) ∈ ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) ) |
109 |
103 104
|
shscli |
⊢ ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) ∈ Sℋ |
110 |
|
shmulcl |
⊢ ( ( ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) ∈ Sℋ ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 2 ·ℎ 𝑥 ) ∈ ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) ) → ( ( 1 / 2 ) ·ℎ ( 2 ·ℎ 𝑥 ) ) ∈ ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) ) |
111 |
109 29 110
|
mp3an12 |
⊢ ( ( 2 ·ℎ 𝑥 ) ∈ ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) → ( ( 1 / 2 ) ·ℎ ( 2 ·ℎ 𝑥 ) ) ∈ ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) ) |
112 |
108 111
|
syl |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → ( ( 1 / 2 ) ·ℎ ( 2 ·ℎ 𝑥 ) ) ∈ ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) ) |
113 |
34 112
|
eqeltrd |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝑌 ) → 𝑥 ∈ ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) ) |
114 |
113
|
ssriv |
⊢ ( 𝑋 ∩ 𝑌 ) ⊆ ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) |
115 |
2 4
|
chsleji |
⊢ ( 𝐵 +ℋ 𝐷 ) ⊆ ( 𝐵 ∨ℋ 𝐷 ) |
116 |
2 4
|
chjcli |
⊢ ( 𝐵 ∨ℋ 𝐷 ) ∈ Cℋ |
117 |
116
|
chshii |
⊢ ( 𝐵 ∨ℋ 𝐷 ) ∈ Sℋ |
118 |
103 117 104
|
shlessi |
⊢ ( ( 𝐵 +ℋ 𝐷 ) ⊆ ( 𝐵 ∨ℋ 𝐷 ) → ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) ⊆ ( ( 𝐵 ∨ℋ 𝐷 ) +ℋ 𝐺 ) ) |
119 |
115 118
|
ax-mp |
⊢ ( ( 𝐵 +ℋ 𝐷 ) +ℋ 𝐺 ) ⊆ ( ( 𝐵 ∨ℋ 𝐷 ) +ℋ 𝐺 ) |
120 |
114 119
|
sstri |
⊢ ( 𝑋 ∩ 𝑌 ) ⊆ ( ( 𝐵 ∨ℋ 𝐷 ) +ℋ 𝐺 ) |
121 |
116 6
|
chsleji |
⊢ ( ( 𝐵 ∨ℋ 𝐷 ) +ℋ 𝐺 ) ⊆ ( ( 𝐵 ∨ℋ 𝐷 ) ∨ℋ 𝐺 ) |
122 |
120 121
|
sstri |
⊢ ( 𝑋 ∩ 𝑌 ) ⊆ ( ( 𝐵 ∨ℋ 𝐷 ) ∨ℋ 𝐺 ) |
123 |
122 15
|
sseqtrri |
⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑍 |