Step |
Hyp |
Ref |
Expression |
1 |
|
mdsymlem1.1 |
|- A e. CH |
2 |
|
mdsymlem1.2 |
|- B e. CH |
3 |
|
mdsymlem1.3 |
|- C = ( A vH p ) |
4 |
|
chub2 |
|- ( ( p e. CH /\ A e. CH ) -> p C_ ( A vH p ) ) |
5 |
1 4
|
mpan2 |
|- ( p e. CH -> p C_ ( A vH p ) ) |
6 |
5 3
|
sseqtrrdi |
|- ( p e. CH -> p C_ C ) |
7 |
1 2
|
chjcomi |
|- ( A vH B ) = ( B vH A ) |
8 |
7
|
sseq2i |
|- ( p C_ ( A vH B ) <-> p C_ ( B vH A ) ) |
9 |
8
|
biimpi |
|- ( p C_ ( A vH B ) -> p C_ ( B vH A ) ) |
10 |
6 9
|
anim12i |
|- ( ( p e. CH /\ p C_ ( A vH B ) ) -> ( p C_ C /\ p C_ ( B vH A ) ) ) |
11 |
|
ssin |
|- ( ( p C_ C /\ p C_ ( B vH A ) ) <-> p C_ ( C i^i ( B vH A ) ) ) |
12 |
10 11
|
sylib |
|- ( ( p e. CH /\ p C_ ( A vH B ) ) -> p C_ ( C i^i ( B vH A ) ) ) |
13 |
12
|
ad2ant2rl |
|- ( ( ( p e. CH /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> p C_ ( C i^i ( B vH A ) ) ) |
14 |
|
chjcl |
|- ( ( A e. CH /\ p e. CH ) -> ( A vH p ) e. CH ) |
15 |
1 14
|
mpan |
|- ( p e. CH -> ( A vH p ) e. CH ) |
16 |
3 15
|
eqeltrid |
|- ( p e. CH -> C e. CH ) |
17 |
16
|
adantr |
|- ( ( p e. CH /\ B MH* A ) -> C e. CH ) |
18 |
|
chub1 |
|- ( ( A e. CH /\ p e. CH ) -> A C_ ( A vH p ) ) |
19 |
1 18
|
mpan |
|- ( p e. CH -> A C_ ( A vH p ) ) |
20 |
19 3
|
sseqtrrdi |
|- ( p e. CH -> A C_ C ) |
21 |
20
|
anim2i |
|- ( ( B MH* A /\ p e. CH ) -> ( B MH* A /\ A C_ C ) ) |
22 |
21
|
ancoms |
|- ( ( p e. CH /\ B MH* A ) -> ( B MH* A /\ A C_ C ) ) |
23 |
|
dmdi |
|- ( ( ( B e. CH /\ A e. CH /\ C e. CH ) /\ ( B MH* A /\ A C_ C ) ) -> ( ( C i^i B ) vH A ) = ( C i^i ( B vH A ) ) ) |
24 |
2 23
|
mp3anl1 |
|- ( ( ( A e. CH /\ C e. CH ) /\ ( B MH* A /\ A C_ C ) ) -> ( ( C i^i B ) vH A ) = ( C i^i ( B vH A ) ) ) |
25 |
1 24
|
mpanl1 |
|- ( ( C e. CH /\ ( B MH* A /\ A C_ C ) ) -> ( ( C i^i B ) vH A ) = ( C i^i ( B vH A ) ) ) |
26 |
17 22 25
|
syl2anc |
|- ( ( p e. CH /\ B MH* A ) -> ( ( C i^i B ) vH A ) = ( C i^i ( B vH A ) ) ) |
27 |
26
|
adantlr |
|- ( ( ( p e. CH /\ ( B i^i C ) C_ A ) /\ B MH* A ) -> ( ( C i^i B ) vH A ) = ( C i^i ( B vH A ) ) ) |
28 |
|
incom |
|- ( C i^i B ) = ( B i^i C ) |
29 |
28
|
oveq1i |
|- ( ( C i^i B ) vH A ) = ( ( B i^i C ) vH A ) |
30 |
|
chincl |
|- ( ( B e. CH /\ C e. CH ) -> ( B i^i C ) e. CH ) |
31 |
2 30
|
mpan |
|- ( C e. CH -> ( B i^i C ) e. CH ) |
32 |
|
chlejb1 |
|- ( ( ( B i^i C ) e. CH /\ A e. CH ) -> ( ( B i^i C ) C_ A <-> ( ( B i^i C ) vH A ) = A ) ) |
33 |
1 32
|
mpan2 |
|- ( ( B i^i C ) e. CH -> ( ( B i^i C ) C_ A <-> ( ( B i^i C ) vH A ) = A ) ) |
34 |
16 31 33
|
3syl |
|- ( p e. CH -> ( ( B i^i C ) C_ A <-> ( ( B i^i C ) vH A ) = A ) ) |
35 |
34
|
biimpa |
|- ( ( p e. CH /\ ( B i^i C ) C_ A ) -> ( ( B i^i C ) vH A ) = A ) |
36 |
29 35
|
eqtrid |
|- ( ( p e. CH /\ ( B i^i C ) C_ A ) -> ( ( C i^i B ) vH A ) = A ) |
37 |
36
|
adantr |
|- ( ( ( p e. CH /\ ( B i^i C ) C_ A ) /\ B MH* A ) -> ( ( C i^i B ) vH A ) = A ) |
38 |
27 37
|
eqtr3d |
|- ( ( ( p e. CH /\ ( B i^i C ) C_ A ) /\ B MH* A ) -> ( C i^i ( B vH A ) ) = A ) |
39 |
38
|
adantrr |
|- ( ( ( p e. CH /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> ( C i^i ( B vH A ) ) = A ) |
40 |
13 39
|
sseqtrd |
|- ( ( ( p e. CH /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> p C_ A ) |