Step |
Hyp |
Ref |
Expression |
1 |
|
mdsymlem1.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
mdsymlem1.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
mdsymlem1.3 |
⊢ 𝐶 = ( 𝐴 ∨ℋ 𝑝 ) |
4 |
|
chub2 |
⊢ ( ( 𝑝 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → 𝑝 ⊆ ( 𝐴 ∨ℋ 𝑝 ) ) |
5 |
1 4
|
mpan2 |
⊢ ( 𝑝 ∈ Cℋ → 𝑝 ⊆ ( 𝐴 ∨ℋ 𝑝 ) ) |
6 |
5 3
|
sseqtrrdi |
⊢ ( 𝑝 ∈ Cℋ → 𝑝 ⊆ 𝐶 ) |
7 |
1 2
|
chjcomi |
⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) |
8 |
7
|
sseq2i |
⊢ ( 𝑝 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ↔ 𝑝 ⊆ ( 𝐵 ∨ℋ 𝐴 ) ) |
9 |
8
|
biimpi |
⊢ ( 𝑝 ⊆ ( 𝐴 ∨ℋ 𝐵 ) → 𝑝 ⊆ ( 𝐵 ∨ℋ 𝐴 ) ) |
10 |
6 9
|
anim12i |
⊢ ( ( 𝑝 ∈ Cℋ ∧ 𝑝 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( 𝑝 ⊆ 𝐶 ∧ 𝑝 ⊆ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
11 |
|
ssin |
⊢ ( ( 𝑝 ⊆ 𝐶 ∧ 𝑝 ⊆ ( 𝐵 ∨ℋ 𝐴 ) ) ↔ 𝑝 ⊆ ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
12 |
10 11
|
sylib |
⊢ ( ( 𝑝 ∈ Cℋ ∧ 𝑝 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → 𝑝 ⊆ ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
13 |
12
|
ad2ant2rl |
⊢ ( ( ( 𝑝 ∈ Cℋ ∧ ( 𝐵 ∩ 𝐶 ) ⊆ 𝐴 ) ∧ ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → 𝑝 ⊆ ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
14 |
|
chjcl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑝 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝑝 ) ∈ Cℋ ) |
15 |
1 14
|
mpan |
⊢ ( 𝑝 ∈ Cℋ → ( 𝐴 ∨ℋ 𝑝 ) ∈ Cℋ ) |
16 |
3 15
|
eqeltrid |
⊢ ( 𝑝 ∈ Cℋ → 𝐶 ∈ Cℋ ) |
17 |
16
|
adantr |
⊢ ( ( 𝑝 ∈ Cℋ ∧ 𝐵 𝑀ℋ* 𝐴 ) → 𝐶 ∈ Cℋ ) |
18 |
|
chub1 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑝 ∈ Cℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ 𝑝 ) ) |
19 |
1 18
|
mpan |
⊢ ( 𝑝 ∈ Cℋ → 𝐴 ⊆ ( 𝐴 ∨ℋ 𝑝 ) ) |
20 |
19 3
|
sseqtrrdi |
⊢ ( 𝑝 ∈ Cℋ → 𝐴 ⊆ 𝐶 ) |
21 |
20
|
anim2i |
⊢ ( ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ∈ Cℋ ) → ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) |
22 |
21
|
ancoms |
⊢ ( ( 𝑝 ∈ Cℋ ∧ 𝐵 𝑀ℋ* 𝐴 ) → ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) |
23 |
|
dmdi |
⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
24 |
2 23
|
mp3anl1 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
25 |
1 24
|
mpanl1 |
⊢ ( ( 𝐶 ∈ Cℋ ∧ ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
26 |
17 22 25
|
syl2anc |
⊢ ( ( 𝑝 ∈ Cℋ ∧ 𝐵 𝑀ℋ* 𝐴 ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
27 |
26
|
adantlr |
⊢ ( ( ( 𝑝 ∈ Cℋ ∧ ( 𝐵 ∩ 𝐶 ) ⊆ 𝐴 ) ∧ 𝐵 𝑀ℋ* 𝐴 ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
28 |
|
incom |
⊢ ( 𝐶 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐶 ) |
29 |
28
|
oveq1i |
⊢ ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = ( ( 𝐵 ∩ 𝐶 ) ∨ℋ 𝐴 ) |
30 |
|
chincl |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐵 ∩ 𝐶 ) ∈ Cℋ ) |
31 |
2 30
|
mpan |
⊢ ( 𝐶 ∈ Cℋ → ( 𝐵 ∩ 𝐶 ) ∈ Cℋ ) |
32 |
|
chlejb1 |
⊢ ( ( ( 𝐵 ∩ 𝐶 ) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( ( 𝐵 ∩ 𝐶 ) ⊆ 𝐴 ↔ ( ( 𝐵 ∩ 𝐶 ) ∨ℋ 𝐴 ) = 𝐴 ) ) |
33 |
1 32
|
mpan2 |
⊢ ( ( 𝐵 ∩ 𝐶 ) ∈ Cℋ → ( ( 𝐵 ∩ 𝐶 ) ⊆ 𝐴 ↔ ( ( 𝐵 ∩ 𝐶 ) ∨ℋ 𝐴 ) = 𝐴 ) ) |
34 |
16 31 33
|
3syl |
⊢ ( 𝑝 ∈ Cℋ → ( ( 𝐵 ∩ 𝐶 ) ⊆ 𝐴 ↔ ( ( 𝐵 ∩ 𝐶 ) ∨ℋ 𝐴 ) = 𝐴 ) ) |
35 |
34
|
biimpa |
⊢ ( ( 𝑝 ∈ Cℋ ∧ ( 𝐵 ∩ 𝐶 ) ⊆ 𝐴 ) → ( ( 𝐵 ∩ 𝐶 ) ∨ℋ 𝐴 ) = 𝐴 ) |
36 |
29 35
|
eqtrid |
⊢ ( ( 𝑝 ∈ Cℋ ∧ ( 𝐵 ∩ 𝐶 ) ⊆ 𝐴 ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = 𝐴 ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝑝 ∈ Cℋ ∧ ( 𝐵 ∩ 𝐶 ) ⊆ 𝐴 ) ∧ 𝐵 𝑀ℋ* 𝐴 ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = 𝐴 ) |
38 |
27 37
|
eqtr3d |
⊢ ( ( ( 𝑝 ∈ Cℋ ∧ ( 𝐵 ∩ 𝐶 ) ⊆ 𝐴 ) ∧ 𝐵 𝑀ℋ* 𝐴 ) → ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) = 𝐴 ) |
39 |
38
|
adantrr |
⊢ ( ( ( 𝑝 ∈ Cℋ ∧ ( 𝐵 ∩ 𝐶 ) ⊆ 𝐴 ) ∧ ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) = 𝐴 ) |
40 |
13 39
|
sseqtrd |
⊢ ( ( ( 𝑝 ∈ Cℋ ∧ ( 𝐵 ∩ 𝐶 ) ⊆ 𝐴 ) ∧ ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → 𝑝 ⊆ 𝐴 ) |