Step |
Hyp |
Ref |
Expression |
1 |
|
mdsymlem1.1 |
|- A e. CH |
2 |
|
mdsymlem1.2 |
|- B e. CH |
3 |
|
mdsymlem1.3 |
|- C = ( A vH p ) |
4 |
2
|
hatomici |
|- ( B =/= 0H -> E. r e. HAtoms r C_ B ) |
5 |
|
simplll |
|- ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ ( r e. HAtoms /\ r C_ B ) ) -> p e. HAtoms ) |
6 |
|
atelch |
|- ( p e. HAtoms -> p e. CH ) |
7 |
|
atelch |
|- ( r e. HAtoms -> r e. CH ) |
8 |
|
chub1 |
|- ( ( p e. CH /\ r e. CH ) -> p C_ ( p vH r ) ) |
9 |
6 7 8
|
syl2an |
|- ( ( p e. HAtoms /\ r e. HAtoms ) -> p C_ ( p vH r ) ) |
10 |
9
|
adantlr |
|- ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ r e. HAtoms ) -> p C_ ( p vH r ) ) |
11 |
10
|
adantlr |
|- ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) -> p C_ ( p vH r ) ) |
12 |
1 2 3
|
mdsymlem1 |
|- ( ( ( p e. CH /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> p C_ A ) |
13 |
6 12
|
sylanl1 |
|- ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> p C_ A ) |
14 |
13
|
adantr |
|- ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) -> p C_ A ) |
15 |
11 14
|
jca |
|- ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) -> ( p C_ ( p vH r ) /\ p C_ A ) ) |
16 |
15
|
anim1i |
|- ( ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) /\ r C_ B ) -> ( ( p C_ ( p vH r ) /\ p C_ A ) /\ r C_ B ) ) |
17 |
|
anass |
|- ( ( ( p C_ ( p vH r ) /\ p C_ A ) /\ r C_ B ) <-> ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) ) |
18 |
16 17
|
sylib |
|- ( ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) /\ r C_ B ) -> ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) ) |
19 |
18
|
anasss |
|- ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ ( r e. HAtoms /\ r C_ B ) ) -> ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) ) |
20 |
|
oveq1 |
|- ( q = p -> ( q vH r ) = ( p vH r ) ) |
21 |
20
|
sseq2d |
|- ( q = p -> ( p C_ ( q vH r ) <-> p C_ ( p vH r ) ) ) |
22 |
|
sseq1 |
|- ( q = p -> ( q C_ A <-> p C_ A ) ) |
23 |
22
|
anbi1d |
|- ( q = p -> ( ( q C_ A /\ r C_ B ) <-> ( p C_ A /\ r C_ B ) ) ) |
24 |
21 23
|
anbi12d |
|- ( q = p -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) <-> ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) ) ) |
25 |
24
|
rspcev |
|- ( ( p e. HAtoms /\ ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) ) -> E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) |
26 |
5 19 25
|
syl2anc |
|- ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ ( r e. HAtoms /\ r C_ B ) ) -> E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) |
27 |
26
|
exp32 |
|- ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> ( r e. HAtoms -> ( r C_ B -> E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) |
28 |
27
|
reximdvai |
|- ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> ( E. r e. HAtoms r C_ B -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) |
29 |
4 28
|
syl5 |
|- ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> ( B =/= 0H -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) |