| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdsymlem1.1 |
|- A e. CH |
| 2 |
|
mdsymlem1.2 |
|- B e. CH |
| 3 |
|
mdsymlem1.3 |
|- C = ( A vH p ) |
| 4 |
2
|
hatomici |
|- ( B =/= 0H -> E. r e. HAtoms r C_ B ) |
| 5 |
|
simplll |
|- ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ ( r e. HAtoms /\ r C_ B ) ) -> p e. HAtoms ) |
| 6 |
|
atelch |
|- ( p e. HAtoms -> p e. CH ) |
| 7 |
|
atelch |
|- ( r e. HAtoms -> r e. CH ) |
| 8 |
|
chub1 |
|- ( ( p e. CH /\ r e. CH ) -> p C_ ( p vH r ) ) |
| 9 |
6 7 8
|
syl2an |
|- ( ( p e. HAtoms /\ r e. HAtoms ) -> p C_ ( p vH r ) ) |
| 10 |
9
|
adantlr |
|- ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ r e. HAtoms ) -> p C_ ( p vH r ) ) |
| 11 |
10
|
adantlr |
|- ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) -> p C_ ( p vH r ) ) |
| 12 |
1 2 3
|
mdsymlem1 |
|- ( ( ( p e. CH /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> p C_ A ) |
| 13 |
6 12
|
sylanl1 |
|- ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> p C_ A ) |
| 14 |
13
|
adantr |
|- ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) -> p C_ A ) |
| 15 |
11 14
|
jca |
|- ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) -> ( p C_ ( p vH r ) /\ p C_ A ) ) |
| 16 |
15
|
anim1i |
|- ( ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) /\ r C_ B ) -> ( ( p C_ ( p vH r ) /\ p C_ A ) /\ r C_ B ) ) |
| 17 |
|
anass |
|- ( ( ( p C_ ( p vH r ) /\ p C_ A ) /\ r C_ B ) <-> ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) ) |
| 18 |
16 17
|
sylib |
|- ( ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) /\ r C_ B ) -> ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) ) |
| 19 |
18
|
anasss |
|- ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ ( r e. HAtoms /\ r C_ B ) ) -> ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) ) |
| 20 |
|
oveq1 |
|- ( q = p -> ( q vH r ) = ( p vH r ) ) |
| 21 |
20
|
sseq2d |
|- ( q = p -> ( p C_ ( q vH r ) <-> p C_ ( p vH r ) ) ) |
| 22 |
|
sseq1 |
|- ( q = p -> ( q C_ A <-> p C_ A ) ) |
| 23 |
22
|
anbi1d |
|- ( q = p -> ( ( q C_ A /\ r C_ B ) <-> ( p C_ A /\ r C_ B ) ) ) |
| 24 |
21 23
|
anbi12d |
|- ( q = p -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) <-> ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) ) ) |
| 25 |
24
|
rspcev |
|- ( ( p e. HAtoms /\ ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) ) -> E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) |
| 26 |
5 19 25
|
syl2anc |
|- ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ ( r e. HAtoms /\ r C_ B ) ) -> E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) |
| 27 |
26
|
exp32 |
|- ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> ( r e. HAtoms -> ( r C_ B -> E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) |
| 28 |
27
|
reximdvai |
|- ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> ( E. r e. HAtoms r C_ B -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) |
| 29 |
4 28
|
syl5 |
|- ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> ( B =/= 0H -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) |