Metamath Proof Explorer


Theorem mdsymlem2

Description: Lemma for mdsymi . (Contributed by NM, 1-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdsymlem1.1
|- A e. CH
mdsymlem1.2
|- B e. CH
mdsymlem1.3
|- C = ( A vH p )
Assertion mdsymlem2
|- ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> ( B =/= 0H -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) )

Proof

Step Hyp Ref Expression
1 mdsymlem1.1
 |-  A e. CH
2 mdsymlem1.2
 |-  B e. CH
3 mdsymlem1.3
 |-  C = ( A vH p )
4 2 hatomici
 |-  ( B =/= 0H -> E. r e. HAtoms r C_ B )
5 simplll
 |-  ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ ( r e. HAtoms /\ r C_ B ) ) -> p e. HAtoms )
6 atelch
 |-  ( p e. HAtoms -> p e. CH )
7 atelch
 |-  ( r e. HAtoms -> r e. CH )
8 chub1
 |-  ( ( p e. CH /\ r e. CH ) -> p C_ ( p vH r ) )
9 6 7 8 syl2an
 |-  ( ( p e. HAtoms /\ r e. HAtoms ) -> p C_ ( p vH r ) )
10 9 adantlr
 |-  ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ r e. HAtoms ) -> p C_ ( p vH r ) )
11 10 adantlr
 |-  ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) -> p C_ ( p vH r ) )
12 1 2 3 mdsymlem1
 |-  ( ( ( p e. CH /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> p C_ A )
13 6 12 sylanl1
 |-  ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> p C_ A )
14 13 adantr
 |-  ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) -> p C_ A )
15 11 14 jca
 |-  ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) -> ( p C_ ( p vH r ) /\ p C_ A ) )
16 15 anim1i
 |-  ( ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) /\ r C_ B ) -> ( ( p C_ ( p vH r ) /\ p C_ A ) /\ r C_ B ) )
17 anass
 |-  ( ( ( p C_ ( p vH r ) /\ p C_ A ) /\ r C_ B ) <-> ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) )
18 16 17 sylib
 |-  ( ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ r e. HAtoms ) /\ r C_ B ) -> ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) )
19 18 anasss
 |-  ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ ( r e. HAtoms /\ r C_ B ) ) -> ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) )
20 oveq1
 |-  ( q = p -> ( q vH r ) = ( p vH r ) )
21 20 sseq2d
 |-  ( q = p -> ( p C_ ( q vH r ) <-> p C_ ( p vH r ) ) )
22 sseq1
 |-  ( q = p -> ( q C_ A <-> p C_ A ) )
23 22 anbi1d
 |-  ( q = p -> ( ( q C_ A /\ r C_ B ) <-> ( p C_ A /\ r C_ B ) ) )
24 21 23 anbi12d
 |-  ( q = p -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) <-> ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) ) )
25 24 rspcev
 |-  ( ( p e. HAtoms /\ ( p C_ ( p vH r ) /\ ( p C_ A /\ r C_ B ) ) ) -> E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) )
26 5 19 25 syl2anc
 |-  ( ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) /\ ( r e. HAtoms /\ r C_ B ) ) -> E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) )
27 26 exp32
 |-  ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> ( r e. HAtoms -> ( r C_ B -> E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) )
28 27 reximdvai
 |-  ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> ( E. r e. HAtoms r C_ B -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) )
29 4 28 syl5
 |-  ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> ( B =/= 0H -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) )