Step |
Hyp |
Ref |
Expression |
1 |
|
mdsymlem1.1 |
|- A e. CH |
2 |
|
mdsymlem1.2 |
|- B e. CH |
3 |
|
mdsymlem1.3 |
|- C = ( A vH p ) |
4 |
|
ssin |
|- ( ( r C_ B /\ r C_ C ) <-> r C_ ( B i^i C ) ) |
5 |
3
|
sseq2i |
|- ( r C_ C <-> r C_ ( A vH p ) ) |
6 |
5
|
biimpi |
|- ( r C_ C -> r C_ ( A vH p ) ) |
7 |
6
|
adantl |
|- ( ( r C_ B /\ r C_ C ) -> r C_ ( A vH p ) ) |
8 |
4 7
|
sylbir |
|- ( r C_ ( B i^i C ) -> r C_ ( A vH p ) ) |
9 |
1
|
atcvat4i |
|- ( ( r e. HAtoms /\ p e. HAtoms ) -> ( ( A =/= 0H /\ r C_ ( A vH p ) ) -> E. q e. HAtoms ( q C_ A /\ r C_ ( p vH q ) ) ) ) |
10 |
9
|
exp4b |
|- ( r e. HAtoms -> ( p e. HAtoms -> ( A =/= 0H -> ( r C_ ( A vH p ) -> E. q e. HAtoms ( q C_ A /\ r C_ ( p vH q ) ) ) ) ) ) |
11 |
10
|
com34 |
|- ( r e. HAtoms -> ( p e. HAtoms -> ( r C_ ( A vH p ) -> ( A =/= 0H -> E. q e. HAtoms ( q C_ A /\ r C_ ( p vH q ) ) ) ) ) ) |
12 |
11
|
com23 |
|- ( r e. HAtoms -> ( r C_ ( A vH p ) -> ( p e. HAtoms -> ( A =/= 0H -> E. q e. HAtoms ( q C_ A /\ r C_ ( p vH q ) ) ) ) ) ) |
13 |
12
|
imp4b |
|- ( ( r e. HAtoms /\ r C_ ( A vH p ) ) -> ( ( p e. HAtoms /\ A =/= 0H ) -> E. q e. HAtoms ( q C_ A /\ r C_ ( p vH q ) ) ) ) |
14 |
8 13
|
sylan2 |
|- ( ( r e. HAtoms /\ r C_ ( B i^i C ) ) -> ( ( p e. HAtoms /\ A =/= 0H ) -> E. q e. HAtoms ( q C_ A /\ r C_ ( p vH q ) ) ) ) |
15 |
14
|
adantrr |
|- ( ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) -> ( ( p e. HAtoms /\ A =/= 0H ) -> E. q e. HAtoms ( q C_ A /\ r C_ ( p vH q ) ) ) ) |
16 |
15
|
com12 |
|- ( ( p e. HAtoms /\ A =/= 0H ) -> ( ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) -> E. q e. HAtoms ( q C_ A /\ r C_ ( p vH q ) ) ) ) |
17 |
16
|
adantlr |
|- ( ( ( p e. HAtoms /\ -. ( B i^i C ) C_ A ) /\ A =/= 0H ) -> ( ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) -> E. q e. HAtoms ( q C_ A /\ r C_ ( p vH q ) ) ) ) |
18 |
17
|
adantlr |
|- ( ( ( ( p e. HAtoms /\ -. ( B i^i C ) C_ A ) /\ p C_ ( A vH B ) ) /\ A =/= 0H ) -> ( ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) -> E. q e. HAtoms ( q C_ A /\ r C_ ( p vH q ) ) ) ) |
19 |
18
|
imp |
|- ( ( ( ( ( p e. HAtoms /\ -. ( B i^i C ) C_ A ) /\ p C_ ( A vH B ) ) /\ A =/= 0H ) /\ ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) ) -> E. q e. HAtoms ( q C_ A /\ r C_ ( p vH q ) ) ) |
20 |
|
nssne2 |
|- ( ( q C_ A /\ -. r C_ A ) -> q =/= r ) |
21 |
20
|
adantrl |
|- ( ( q C_ A /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) -> q =/= r ) |
22 |
|
atnemeq0 |
|- ( ( q e. HAtoms /\ r e. HAtoms ) -> ( q =/= r <-> ( q i^i r ) = 0H ) ) |
23 |
22
|
ancoms |
|- ( ( r e. HAtoms /\ q e. HAtoms ) -> ( q =/= r <-> ( q i^i r ) = 0H ) ) |
24 |
21 23
|
syl5ib |
|- ( ( r e. HAtoms /\ q e. HAtoms ) -> ( ( q C_ A /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) -> ( q i^i r ) = 0H ) ) |
25 |
24
|
adantll |
|- ( ( ( p e. HAtoms /\ r e. HAtoms ) /\ q e. HAtoms ) -> ( ( q C_ A /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) -> ( q i^i r ) = 0H ) ) |
26 |
25
|
adantr |
|- ( ( ( ( p e. HAtoms /\ r e. HAtoms ) /\ q e. HAtoms ) /\ r C_ ( p vH q ) ) -> ( ( q C_ A /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) -> ( q i^i r ) = 0H ) ) |
27 |
|
atelch |
|- ( p e. HAtoms -> p e. CH ) |
28 |
|
atelch |
|- ( q e. HAtoms -> q e. CH ) |
29 |
|
chjcom |
|- ( ( p e. CH /\ q e. CH ) -> ( p vH q ) = ( q vH p ) ) |
30 |
27 28 29
|
syl2an |
|- ( ( p e. HAtoms /\ q e. HAtoms ) -> ( p vH q ) = ( q vH p ) ) |
31 |
30
|
adantlr |
|- ( ( ( p e. HAtoms /\ r e. HAtoms ) /\ q e. HAtoms ) -> ( p vH q ) = ( q vH p ) ) |
32 |
31
|
sseq2d |
|- ( ( ( p e. HAtoms /\ r e. HAtoms ) /\ q e. HAtoms ) -> ( r C_ ( p vH q ) <-> r C_ ( q vH p ) ) ) |
33 |
|
atexch |
|- ( ( q e. CH /\ r e. HAtoms /\ p e. HAtoms ) -> ( ( r C_ ( q vH p ) /\ ( q i^i r ) = 0H ) -> p C_ ( q vH r ) ) ) |
34 |
28 33
|
syl3an1 |
|- ( ( q e. HAtoms /\ r e. HAtoms /\ p e. HAtoms ) -> ( ( r C_ ( q vH p ) /\ ( q i^i r ) = 0H ) -> p C_ ( q vH r ) ) ) |
35 |
34
|
3com13 |
|- ( ( p e. HAtoms /\ r e. HAtoms /\ q e. HAtoms ) -> ( ( r C_ ( q vH p ) /\ ( q i^i r ) = 0H ) -> p C_ ( q vH r ) ) ) |
36 |
35
|
3expa |
|- ( ( ( p e. HAtoms /\ r e. HAtoms ) /\ q e. HAtoms ) -> ( ( r C_ ( q vH p ) /\ ( q i^i r ) = 0H ) -> p C_ ( q vH r ) ) ) |
37 |
36
|
expd |
|- ( ( ( p e. HAtoms /\ r e. HAtoms ) /\ q e. HAtoms ) -> ( r C_ ( q vH p ) -> ( ( q i^i r ) = 0H -> p C_ ( q vH r ) ) ) ) |
38 |
32 37
|
sylbid |
|- ( ( ( p e. HAtoms /\ r e. HAtoms ) /\ q e. HAtoms ) -> ( r C_ ( p vH q ) -> ( ( q i^i r ) = 0H -> p C_ ( q vH r ) ) ) ) |
39 |
38
|
imp |
|- ( ( ( ( p e. HAtoms /\ r e. HAtoms ) /\ q e. HAtoms ) /\ r C_ ( p vH q ) ) -> ( ( q i^i r ) = 0H -> p C_ ( q vH r ) ) ) |
40 |
26 39
|
syld |
|- ( ( ( ( p e. HAtoms /\ r e. HAtoms ) /\ q e. HAtoms ) /\ r C_ ( p vH q ) ) -> ( ( q C_ A /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) -> p C_ ( q vH r ) ) ) |
41 |
40
|
expd |
|- ( ( ( ( p e. HAtoms /\ r e. HAtoms ) /\ q e. HAtoms ) /\ r C_ ( p vH q ) ) -> ( q C_ A -> ( ( r C_ ( B i^i C ) /\ -. r C_ A ) -> p C_ ( q vH r ) ) ) ) |
42 |
41
|
exp31 |
|- ( ( p e. HAtoms /\ r e. HAtoms ) -> ( q e. HAtoms -> ( r C_ ( p vH q ) -> ( q C_ A -> ( ( r C_ ( B i^i C ) /\ -. r C_ A ) -> p C_ ( q vH r ) ) ) ) ) ) |
43 |
42
|
com24 |
|- ( ( p e. HAtoms /\ r e. HAtoms ) -> ( q C_ A -> ( r C_ ( p vH q ) -> ( q e. HAtoms -> ( ( r C_ ( B i^i C ) /\ -. r C_ A ) -> p C_ ( q vH r ) ) ) ) ) ) |
44 |
43
|
impd |
|- ( ( p e. HAtoms /\ r e. HAtoms ) -> ( ( q C_ A /\ r C_ ( p vH q ) ) -> ( q e. HAtoms -> ( ( r C_ ( B i^i C ) /\ -. r C_ A ) -> p C_ ( q vH r ) ) ) ) ) |
45 |
44
|
com24 |
|- ( ( p e. HAtoms /\ r e. HAtoms ) -> ( ( r C_ ( B i^i C ) /\ -. r C_ A ) -> ( q e. HAtoms -> ( ( q C_ A /\ r C_ ( p vH q ) ) -> p C_ ( q vH r ) ) ) ) ) |
46 |
45
|
imp4b |
|- ( ( ( p e. HAtoms /\ r e. HAtoms ) /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) -> ( ( q e. HAtoms /\ ( q C_ A /\ r C_ ( p vH q ) ) ) -> p C_ ( q vH r ) ) ) |
47 |
46
|
anasss |
|- ( ( p e. HAtoms /\ ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) ) -> ( ( q e. HAtoms /\ ( q C_ A /\ r C_ ( p vH q ) ) ) -> p C_ ( q vH r ) ) ) |
48 |
|
simprl |
|- ( ( q e. HAtoms /\ ( q C_ A /\ r C_ ( p vH q ) ) ) -> q C_ A ) |
49 |
48
|
a1i |
|- ( ( p e. HAtoms /\ ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) ) -> ( ( q e. HAtoms /\ ( q C_ A /\ r C_ ( p vH q ) ) ) -> q C_ A ) ) |
50 |
|
simpl |
|- ( ( r C_ B /\ r C_ C ) -> r C_ B ) |
51 |
4 50
|
sylbir |
|- ( r C_ ( B i^i C ) -> r C_ B ) |
52 |
51
|
ad2antrl |
|- ( ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) -> r C_ B ) |
53 |
52
|
adantl |
|- ( ( p e. HAtoms /\ ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) ) -> r C_ B ) |
54 |
49 53
|
jctird |
|- ( ( p e. HAtoms /\ ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) ) -> ( ( q e. HAtoms /\ ( q C_ A /\ r C_ ( p vH q ) ) ) -> ( q C_ A /\ r C_ B ) ) ) |
55 |
47 54
|
jcad |
|- ( ( p e. HAtoms /\ ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) ) -> ( ( q e. HAtoms /\ ( q C_ A /\ r C_ ( p vH q ) ) ) -> ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) |
56 |
55
|
expd |
|- ( ( p e. HAtoms /\ ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) ) -> ( q e. HAtoms -> ( ( q C_ A /\ r C_ ( p vH q ) ) -> ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) |
57 |
56
|
adantlr |
|- ( ( ( p e. HAtoms /\ -. ( B i^i C ) C_ A ) /\ ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) ) -> ( q e. HAtoms -> ( ( q C_ A /\ r C_ ( p vH q ) ) -> ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) |
58 |
57
|
adantlr |
|- ( ( ( ( p e. HAtoms /\ -. ( B i^i C ) C_ A ) /\ p C_ ( A vH B ) ) /\ ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) ) -> ( q e. HAtoms -> ( ( q C_ A /\ r C_ ( p vH q ) ) -> ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) |
59 |
58
|
adantlr |
|- ( ( ( ( ( p e. HAtoms /\ -. ( B i^i C ) C_ A ) /\ p C_ ( A vH B ) ) /\ A =/= 0H ) /\ ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) ) -> ( q e. HAtoms -> ( ( q C_ A /\ r C_ ( p vH q ) ) -> ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) |
60 |
59
|
reximdvai |
|- ( ( ( ( ( p e. HAtoms /\ -. ( B i^i C ) C_ A ) /\ p C_ ( A vH B ) ) /\ A =/= 0H ) /\ ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) ) -> ( E. q e. HAtoms ( q C_ A /\ r C_ ( p vH q ) ) -> E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) |
61 |
19 60
|
mpd |
|- ( ( ( ( ( p e. HAtoms /\ -. ( B i^i C ) C_ A ) /\ p C_ ( A vH B ) ) /\ A =/= 0H ) /\ ( r e. HAtoms /\ ( r C_ ( B i^i C ) /\ -. r C_ A ) ) ) -> E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) |
62 |
|
chjcl |
|- ( ( A e. CH /\ p e. CH ) -> ( A vH p ) e. CH ) |
63 |
1 62
|
mpan |
|- ( p e. CH -> ( A vH p ) e. CH ) |
64 |
3 63
|
eqeltrid |
|- ( p e. CH -> C e. CH ) |
65 |
|
chincl |
|- ( ( B e. CH /\ C e. CH ) -> ( B i^i C ) e. CH ) |
66 |
2 64 65
|
sylancr |
|- ( p e. CH -> ( B i^i C ) e. CH ) |
67 |
27 66
|
syl |
|- ( p e. HAtoms -> ( B i^i C ) e. CH ) |
68 |
|
chrelat2 |
|- ( ( ( B i^i C ) e. CH /\ A e. CH ) -> ( -. ( B i^i C ) C_ A <-> E. r e. HAtoms ( r C_ ( B i^i C ) /\ -. r C_ A ) ) ) |
69 |
67 1 68
|
sylancl |
|- ( p e. HAtoms -> ( -. ( B i^i C ) C_ A <-> E. r e. HAtoms ( r C_ ( B i^i C ) /\ -. r C_ A ) ) ) |
70 |
69
|
biimpa |
|- ( ( p e. HAtoms /\ -. ( B i^i C ) C_ A ) -> E. r e. HAtoms ( r C_ ( B i^i C ) /\ -. r C_ A ) ) |
71 |
70
|
ad2antrr |
|- ( ( ( ( p e. HAtoms /\ -. ( B i^i C ) C_ A ) /\ p C_ ( A vH B ) ) /\ A =/= 0H ) -> E. r e. HAtoms ( r C_ ( B i^i C ) /\ -. r C_ A ) ) |
72 |
61 71
|
reximddv |
|- ( ( ( ( p e. HAtoms /\ -. ( B i^i C ) C_ A ) /\ p C_ ( A vH B ) ) /\ A =/= 0H ) -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) |