| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdsymlem1.1 |
|
| 2 |
|
mdsymlem1.2 |
|
| 3 |
|
mdsymlem1.3 |
|
| 4 |
|
ssin |
|
| 5 |
3
|
sseq2i |
|
| 6 |
5
|
biimpi |
|
| 7 |
6
|
adantl |
|
| 8 |
4 7
|
sylbir |
|
| 9 |
1
|
atcvat4i |
|
| 10 |
9
|
exp4b |
|
| 11 |
10
|
com34 |
|
| 12 |
11
|
com23 |
|
| 13 |
12
|
imp4b |
|
| 14 |
8 13
|
sylan2 |
|
| 15 |
14
|
adantrr |
|
| 16 |
15
|
com12 |
|
| 17 |
16
|
adantlr |
|
| 18 |
17
|
adantlr |
|
| 19 |
18
|
imp |
|
| 20 |
|
nssne2 |
|
| 21 |
20
|
adantrl |
|
| 22 |
|
atnemeq0 |
|
| 23 |
22
|
ancoms |
|
| 24 |
21 23
|
imbitrid |
|
| 25 |
24
|
adantll |
|
| 26 |
25
|
adantr |
|
| 27 |
|
atelch |
|
| 28 |
|
atelch |
|
| 29 |
|
chjcom |
|
| 30 |
27 28 29
|
syl2an |
|
| 31 |
30
|
adantlr |
|
| 32 |
31
|
sseq2d |
|
| 33 |
|
atexch |
|
| 34 |
28 33
|
syl3an1 |
|
| 35 |
34
|
3com13 |
|
| 36 |
35
|
3expa |
|
| 37 |
36
|
expd |
|
| 38 |
32 37
|
sylbid |
|
| 39 |
38
|
imp |
|
| 40 |
26 39
|
syld |
|
| 41 |
40
|
expd |
|
| 42 |
41
|
exp31 |
|
| 43 |
42
|
com24 |
|
| 44 |
43
|
impd |
|
| 45 |
44
|
com24 |
|
| 46 |
45
|
imp4b |
|
| 47 |
46
|
anasss |
|
| 48 |
|
simprl |
|
| 49 |
48
|
a1i |
|
| 50 |
|
simpl |
|
| 51 |
4 50
|
sylbir |
|
| 52 |
51
|
ad2antrl |
|
| 53 |
52
|
adantl |
|
| 54 |
49 53
|
jctird |
|
| 55 |
47 54
|
jcad |
|
| 56 |
55
|
expd |
|
| 57 |
56
|
adantlr |
|
| 58 |
57
|
adantlr |
|
| 59 |
58
|
adantlr |
|
| 60 |
59
|
reximdvai |
|
| 61 |
19 60
|
mpd |
|
| 62 |
|
chjcl |
|
| 63 |
1 62
|
mpan |
|
| 64 |
3 63
|
eqeltrid |
|
| 65 |
|
chincl |
|
| 66 |
2 64 65
|
sylancr |
|
| 67 |
27 66
|
syl |
|
| 68 |
|
chrelat2 |
|
| 69 |
67 1 68
|
sylancl |
|
| 70 |
69
|
biimpa |
|
| 71 |
70
|
ad2antrr |
|
| 72 |
61 71
|
reximddv |
|