Metamath Proof Explorer


Theorem mdsymlem3

Description: Lemma for mdsymi . (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdsymlem1.1 A C
mdsymlem1.2 B C
mdsymlem1.3 C = A p
Assertion mdsymlem3 p HAtoms ¬ B C A p A B A 0 r HAtoms q HAtoms p q r q A r B

Proof

Step Hyp Ref Expression
1 mdsymlem1.1 A C
2 mdsymlem1.2 B C
3 mdsymlem1.3 C = A p
4 ssin r B r C r B C
5 3 sseq2i r C r A p
6 5 biimpi r C r A p
7 6 adantl r B r C r A p
8 4 7 sylbir r B C r A p
9 1 atcvat4i r HAtoms p HAtoms A 0 r A p q HAtoms q A r p q
10 9 exp4b r HAtoms p HAtoms A 0 r A p q HAtoms q A r p q
11 10 com34 r HAtoms p HAtoms r A p A 0 q HAtoms q A r p q
12 11 com23 r HAtoms r A p p HAtoms A 0 q HAtoms q A r p q
13 12 imp4b r HAtoms r A p p HAtoms A 0 q HAtoms q A r p q
14 8 13 sylan2 r HAtoms r B C p HAtoms A 0 q HAtoms q A r p q
15 14 adantrr r HAtoms r B C ¬ r A p HAtoms A 0 q HAtoms q A r p q
16 15 com12 p HAtoms A 0 r HAtoms r B C ¬ r A q HAtoms q A r p q
17 16 adantlr p HAtoms ¬ B C A A 0 r HAtoms r B C ¬ r A q HAtoms q A r p q
18 17 adantlr p HAtoms ¬ B C A p A B A 0 r HAtoms r B C ¬ r A q HAtoms q A r p q
19 18 imp p HAtoms ¬ B C A p A B A 0 r HAtoms r B C ¬ r A q HAtoms q A r p q
20 nssne2 q A ¬ r A q r
21 20 adantrl q A r B C ¬ r A q r
22 atnemeq0 q HAtoms r HAtoms q r q r = 0
23 22 ancoms r HAtoms q HAtoms q r q r = 0
24 21 23 syl5ib r HAtoms q HAtoms q A r B C ¬ r A q r = 0
25 24 adantll p HAtoms r HAtoms q HAtoms q A r B C ¬ r A q r = 0
26 25 adantr p HAtoms r HAtoms q HAtoms r p q q A r B C ¬ r A q r = 0
27 atelch p HAtoms p C
28 atelch q HAtoms q C
29 chjcom p C q C p q = q p
30 27 28 29 syl2an p HAtoms q HAtoms p q = q p
31 30 adantlr p HAtoms r HAtoms q HAtoms p q = q p
32 31 sseq2d p HAtoms r HAtoms q HAtoms r p q r q p
33 atexch q C r HAtoms p HAtoms r q p q r = 0 p q r
34 28 33 syl3an1 q HAtoms r HAtoms p HAtoms r q p q r = 0 p q r
35 34 3com13 p HAtoms r HAtoms q HAtoms r q p q r = 0 p q r
36 35 3expa p HAtoms r HAtoms q HAtoms r q p q r = 0 p q r
37 36 expd p HAtoms r HAtoms q HAtoms r q p q r = 0 p q r
38 32 37 sylbid p HAtoms r HAtoms q HAtoms r p q q r = 0 p q r
39 38 imp p HAtoms r HAtoms q HAtoms r p q q r = 0 p q r
40 26 39 syld p HAtoms r HAtoms q HAtoms r p q q A r B C ¬ r A p q r
41 40 expd p HAtoms r HAtoms q HAtoms r p q q A r B C ¬ r A p q r
42 41 exp31 p HAtoms r HAtoms q HAtoms r p q q A r B C ¬ r A p q r
43 42 com24 p HAtoms r HAtoms q A r p q q HAtoms r B C ¬ r A p q r
44 43 impd p HAtoms r HAtoms q A r p q q HAtoms r B C ¬ r A p q r
45 44 com24 p HAtoms r HAtoms r B C ¬ r A q HAtoms q A r p q p q r
46 45 imp4b p HAtoms r HAtoms r B C ¬ r A q HAtoms q A r p q p q r
47 46 anasss p HAtoms r HAtoms r B C ¬ r A q HAtoms q A r p q p q r
48 simprl q HAtoms q A r p q q A
49 48 a1i p HAtoms r HAtoms r B C ¬ r A q HAtoms q A r p q q A
50 simpl r B r C r B
51 4 50 sylbir r B C r B
52 51 ad2antrl r HAtoms r B C ¬ r A r B
53 52 adantl p HAtoms r HAtoms r B C ¬ r A r B
54 49 53 jctird p HAtoms r HAtoms r B C ¬ r A q HAtoms q A r p q q A r B
55 47 54 jcad p HAtoms r HAtoms r B C ¬ r A q HAtoms q A r p q p q r q A r B
56 55 expd p HAtoms r HAtoms r B C ¬ r A q HAtoms q A r p q p q r q A r B
57 56 adantlr p HAtoms ¬ B C A r HAtoms r B C ¬ r A q HAtoms q A r p q p q r q A r B
58 57 adantlr p HAtoms ¬ B C A p A B r HAtoms r B C ¬ r A q HAtoms q A r p q p q r q A r B
59 58 adantlr p HAtoms ¬ B C A p A B A 0 r HAtoms r B C ¬ r A q HAtoms q A r p q p q r q A r B
60 59 reximdvai p HAtoms ¬ B C A p A B A 0 r HAtoms r B C ¬ r A q HAtoms q A r p q q HAtoms p q r q A r B
61 19 60 mpd p HAtoms ¬ B C A p A B A 0 r HAtoms r B C ¬ r A q HAtoms p q r q A r B
62 chjcl A C p C A p C
63 1 62 mpan p C A p C
64 3 63 eqeltrid p C C C
65 chincl B C C C B C C
66 2 64 65 sylancr p C B C C
67 27 66 syl p HAtoms B C C
68 chrelat2 B C C A C ¬ B C A r HAtoms r B C ¬ r A
69 67 1 68 sylancl p HAtoms ¬ B C A r HAtoms r B C ¬ r A
70 69 biimpa p HAtoms ¬ B C A r HAtoms r B C ¬ r A
71 70 ad2antrr p HAtoms ¬ B C A p A B A 0 r HAtoms r B C ¬ r A
72 61 71 reximddv p HAtoms ¬ B C A p A B A 0 r HAtoms q HAtoms p q r q A r B