Step |
Hyp |
Ref |
Expression |
1 |
|
mdsymlem1.1 |
|
2 |
|
mdsymlem1.2 |
|
3 |
|
mdsymlem1.3 |
|
4 |
|
ssin |
|
5 |
3
|
sseq2i |
|
6 |
5
|
biimpi |
|
7 |
6
|
adantl |
|
8 |
4 7
|
sylbir |
|
9 |
1
|
atcvat4i |
|
10 |
9
|
exp4b |
|
11 |
10
|
com34 |
|
12 |
11
|
com23 |
|
13 |
12
|
imp4b |
|
14 |
8 13
|
sylan2 |
|
15 |
14
|
adantrr |
|
16 |
15
|
com12 |
|
17 |
16
|
adantlr |
|
18 |
17
|
adantlr |
|
19 |
18
|
imp |
|
20 |
|
nssne2 |
|
21 |
20
|
adantrl |
|
22 |
|
atnemeq0 |
|
23 |
22
|
ancoms |
|
24 |
21 23
|
syl5ib |
|
25 |
24
|
adantll |
|
26 |
25
|
adantr |
|
27 |
|
atelch |
|
28 |
|
atelch |
|
29 |
|
chjcom |
|
30 |
27 28 29
|
syl2an |
|
31 |
30
|
adantlr |
|
32 |
31
|
sseq2d |
|
33 |
|
atexch |
|
34 |
28 33
|
syl3an1 |
|
35 |
34
|
3com13 |
|
36 |
35
|
3expa |
|
37 |
36
|
expd |
|
38 |
32 37
|
sylbid |
|
39 |
38
|
imp |
|
40 |
26 39
|
syld |
|
41 |
40
|
expd |
|
42 |
41
|
exp31 |
|
43 |
42
|
com24 |
|
44 |
43
|
impd |
|
45 |
44
|
com24 |
|
46 |
45
|
imp4b |
|
47 |
46
|
anasss |
|
48 |
|
simprl |
|
49 |
48
|
a1i |
|
50 |
|
simpl |
|
51 |
4 50
|
sylbir |
|
52 |
51
|
ad2antrl |
|
53 |
52
|
adantl |
|
54 |
49 53
|
jctird |
|
55 |
47 54
|
jcad |
|
56 |
55
|
expd |
|
57 |
56
|
adantlr |
|
58 |
57
|
adantlr |
|
59 |
58
|
adantlr |
|
60 |
59
|
reximdvai |
|
61 |
19 60
|
mpd |
|
62 |
|
chjcl |
|
63 |
1 62
|
mpan |
|
64 |
3 63
|
eqeltrid |
|
65 |
|
chincl |
|
66 |
2 64 65
|
sylancr |
|
67 |
27 66
|
syl |
|
68 |
|
chrelat2 |
|
69 |
67 1 68
|
sylancl |
|
70 |
69
|
biimpa |
|
71 |
70
|
ad2antrr |
|
72 |
61 71
|
reximddv |
|