Step |
Hyp |
Ref |
Expression |
1 |
|
mdsymlem1.1 |
|- A e. CH |
2 |
|
mdsymlem1.2 |
|- B e. CH |
3 |
|
mdsymlem1.3 |
|- C = ( A vH p ) |
4 |
1 2 3
|
mdsymlem2 |
|- ( ( ( p e. HAtoms /\ ( B i^i C ) C_ A ) /\ ( B MH* A /\ p C_ ( A vH B ) ) ) -> ( B =/= 0H -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) |
5 |
4
|
exp31 |
|- ( p e. HAtoms -> ( ( B i^i C ) C_ A -> ( ( B MH* A /\ p C_ ( A vH B ) ) -> ( B =/= 0H -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) ) |
6 |
5
|
com4t |
|- ( ( B MH* A /\ p C_ ( A vH B ) ) -> ( B =/= 0H -> ( p e. HAtoms -> ( ( B i^i C ) C_ A -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) ) |
7 |
6
|
ex |
|- ( B MH* A -> ( p C_ ( A vH B ) -> ( B =/= 0H -> ( p e. HAtoms -> ( ( B i^i C ) C_ A -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) ) ) |
8 |
7
|
com23 |
|- ( B MH* A -> ( B =/= 0H -> ( p C_ ( A vH B ) -> ( p e. HAtoms -> ( ( B i^i C ) C_ A -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) ) ) |
9 |
8
|
a1d |
|- ( B MH* A -> ( A =/= 0H -> ( B =/= 0H -> ( p C_ ( A vH B ) -> ( p e. HAtoms -> ( ( B i^i C ) C_ A -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) ) ) ) |
10 |
9
|
imp44 |
|- ( ( B MH* A /\ ( ( A =/= 0H /\ B =/= 0H ) /\ p C_ ( A vH B ) ) ) -> ( p e. HAtoms -> ( ( B i^i C ) C_ A -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) |
11 |
10
|
com3l |
|- ( p e. HAtoms -> ( ( B i^i C ) C_ A -> ( ( B MH* A /\ ( ( A =/= 0H /\ B =/= 0H ) /\ p C_ ( A vH B ) ) ) -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) |
12 |
1 2 3
|
mdsymlem3 |
|- ( ( ( ( p e. HAtoms /\ -. ( B i^i C ) C_ A ) /\ p C_ ( A vH B ) ) /\ A =/= 0H ) -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) |
13 |
12
|
anasss |
|- ( ( ( p e. HAtoms /\ -. ( B i^i C ) C_ A ) /\ ( p C_ ( A vH B ) /\ A =/= 0H ) ) -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) |
14 |
13
|
exp31 |
|- ( p e. HAtoms -> ( -. ( B i^i C ) C_ A -> ( ( p C_ ( A vH B ) /\ A =/= 0H ) -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) |
15 |
14
|
com3r |
|- ( ( p C_ ( A vH B ) /\ A =/= 0H ) -> ( p e. HAtoms -> ( -. ( B i^i C ) C_ A -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) |
16 |
15
|
ancoms |
|- ( ( A =/= 0H /\ p C_ ( A vH B ) ) -> ( p e. HAtoms -> ( -. ( B i^i C ) C_ A -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) |
17 |
16
|
adantlr |
|- ( ( ( A =/= 0H /\ B =/= 0H ) /\ p C_ ( A vH B ) ) -> ( p e. HAtoms -> ( -. ( B i^i C ) C_ A -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) |
18 |
17
|
adantl |
|- ( ( B MH* A /\ ( ( A =/= 0H /\ B =/= 0H ) /\ p C_ ( A vH B ) ) ) -> ( p e. HAtoms -> ( -. ( B i^i C ) C_ A -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) |
19 |
18
|
com3l |
|- ( p e. HAtoms -> ( -. ( B i^i C ) C_ A -> ( ( B MH* A /\ ( ( A =/= 0H /\ B =/= 0H ) /\ p C_ ( A vH B ) ) ) -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) ) |
20 |
11 19
|
pm2.61d |
|- ( p e. HAtoms -> ( ( B MH* A /\ ( ( A =/= 0H /\ B =/= 0H ) /\ p C_ ( A vH B ) ) ) -> E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) |
21 |
|
rexcom |
|- ( E. r e. HAtoms E. q e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) <-> E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) |
22 |
20 21
|
syl6ib |
|- ( p e. HAtoms -> ( ( B MH* A /\ ( ( A =/= 0H /\ B =/= 0H ) /\ p C_ ( A vH B ) ) ) -> E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) |