| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdsymlem1.1 |
|- A e. CH |
| 2 |
|
mdsymlem1.2 |
|- B e. CH |
| 3 |
|
mdsymlem1.3 |
|- C = ( A vH p ) |
| 4 |
|
df-ne |
|- ( q =/= p <-> -. q = p ) |
| 5 |
|
atnemeq0 |
|- ( ( q e. HAtoms /\ p e. HAtoms ) -> ( q =/= p <-> ( q i^i p ) = 0H ) ) |
| 6 |
4 5
|
bitr3id |
|- ( ( q e. HAtoms /\ p e. HAtoms ) -> ( -. q = p <-> ( q i^i p ) = 0H ) ) |
| 7 |
6
|
anbi2d |
|- ( ( q e. HAtoms /\ p e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ -. q = p ) <-> ( p C_ ( q vH r ) /\ ( q i^i p ) = 0H ) ) ) |
| 8 |
7
|
3adant3 |
|- ( ( q e. HAtoms /\ p e. HAtoms /\ r e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ -. q = p ) <-> ( p C_ ( q vH r ) /\ ( q i^i p ) = 0H ) ) ) |
| 9 |
|
atelch |
|- ( q e. HAtoms -> q e. CH ) |
| 10 |
|
atexch |
|- ( ( q e. CH /\ p e. HAtoms /\ r e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ ( q i^i p ) = 0H ) -> r C_ ( q vH p ) ) ) |
| 11 |
9 10
|
syl3an1 |
|- ( ( q e. HAtoms /\ p e. HAtoms /\ r e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ ( q i^i p ) = 0H ) -> r C_ ( q vH p ) ) ) |
| 12 |
8 11
|
sylbid |
|- ( ( q e. HAtoms /\ p e. HAtoms /\ r e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ -. q = p ) -> r C_ ( q vH p ) ) ) |
| 13 |
12
|
expd |
|- ( ( q e. HAtoms /\ p e. HAtoms /\ r e. HAtoms ) -> ( p C_ ( q vH r ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) |
| 14 |
13
|
3com23 |
|- ( ( q e. HAtoms /\ r e. HAtoms /\ p e. HAtoms ) -> ( p C_ ( q vH r ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) |
| 15 |
14
|
3expa |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ p e. HAtoms ) -> ( p C_ ( q vH r ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) |
| 16 |
15
|
adantrl |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( p C_ ( q vH r ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) |
| 17 |
16
|
adantrd |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) |
| 18 |
17
|
imp32 |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) -> r C_ ( q vH p ) ) |
| 19 |
18
|
adantrl |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) ) -> r C_ ( q vH p ) ) |
| 20 |
19
|
adantrr |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> r C_ ( q vH p ) ) |
| 21 |
|
simplrl |
|- ( ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) -> q C_ A ) |
| 22 |
|
atelch |
|- ( p e. HAtoms -> p e. CH ) |
| 23 |
22
|
anim1i |
|- ( ( p e. HAtoms /\ c e. CH ) -> ( p e. CH /\ c e. CH ) ) |
| 24 |
23
|
ancoms |
|- ( ( c e. CH /\ p e. HAtoms ) -> ( p e. CH /\ c e. CH ) ) |
| 25 |
|
chub2 |
|- ( ( A e. CH /\ c e. CH ) -> A C_ ( c vH A ) ) |
| 26 |
1 25
|
mpan |
|- ( c e. CH -> A C_ ( c vH A ) ) |
| 27 |
|
sstr |
|- ( ( q C_ A /\ A C_ ( c vH A ) ) -> q C_ ( c vH A ) ) |
| 28 |
26 27
|
sylan2 |
|- ( ( q C_ A /\ c e. CH ) -> q C_ ( c vH A ) ) |
| 29 |
|
chub1 |
|- ( ( c e. CH /\ A e. CH ) -> c C_ ( c vH A ) ) |
| 30 |
1 29
|
mpan2 |
|- ( c e. CH -> c C_ ( c vH A ) ) |
| 31 |
|
sstr |
|- ( ( p C_ c /\ c C_ ( c vH A ) ) -> p C_ ( c vH A ) ) |
| 32 |
30 31
|
sylan2 |
|- ( ( p C_ c /\ c e. CH ) -> p C_ ( c vH A ) ) |
| 33 |
28 32
|
anim12i |
|- ( ( ( q C_ A /\ c e. CH ) /\ ( p C_ c /\ c e. CH ) ) -> ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) ) |
| 34 |
33
|
anandirs |
|- ( ( ( q C_ A /\ p C_ c ) /\ c e. CH ) -> ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) ) |
| 35 |
34
|
ancoms |
|- ( ( c e. CH /\ ( q C_ A /\ p C_ c ) ) -> ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) ) |
| 36 |
35
|
adantll |
|- ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( q C_ A /\ p C_ c ) ) -> ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) ) |
| 37 |
|
chjcl |
|- ( ( c e. CH /\ A e. CH ) -> ( c vH A ) e. CH ) |
| 38 |
1 37
|
mpan2 |
|- ( c e. CH -> ( c vH A ) e. CH ) |
| 39 |
|
chlub |
|- ( ( q e. CH /\ p e. CH /\ ( c vH A ) e. CH ) -> ( ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) <-> ( q vH p ) C_ ( c vH A ) ) ) |
| 40 |
38 39
|
syl3an3 |
|- ( ( q e. CH /\ p e. CH /\ c e. CH ) -> ( ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) <-> ( q vH p ) C_ ( c vH A ) ) ) |
| 41 |
40
|
3expa |
|- ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) -> ( ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) <-> ( q vH p ) C_ ( c vH A ) ) ) |
| 42 |
41
|
adantr |
|- ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( q C_ A /\ p C_ c ) ) -> ( ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) <-> ( q vH p ) C_ ( c vH A ) ) ) |
| 43 |
36 42
|
mpbid |
|- ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( q C_ A /\ p C_ c ) ) -> ( q vH p ) C_ ( c vH A ) ) |
| 44 |
43
|
adantrl |
|- ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( A C_ c /\ ( q C_ A /\ p C_ c ) ) ) -> ( q vH p ) C_ ( c vH A ) ) |
| 45 |
|
chlejb2 |
|- ( ( A e. CH /\ c e. CH ) -> ( A C_ c <-> ( c vH A ) = c ) ) |
| 46 |
1 45
|
mpan |
|- ( c e. CH -> ( A C_ c <-> ( c vH A ) = c ) ) |
| 47 |
46
|
biimpa |
|- ( ( c e. CH /\ A C_ c ) -> ( c vH A ) = c ) |
| 48 |
47
|
ad2ant2lr |
|- ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( A C_ c /\ ( q C_ A /\ p C_ c ) ) ) -> ( c vH A ) = c ) |
| 49 |
44 48
|
sseqtrd |
|- ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( A C_ c /\ ( q C_ A /\ p C_ c ) ) ) -> ( q vH p ) C_ c ) |
| 50 |
49
|
exp45 |
|- ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) -> ( A C_ c -> ( q C_ A -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) |
| 51 |
50
|
anasss |
|- ( ( q e. CH /\ ( p e. CH /\ c e. CH ) ) -> ( A C_ c -> ( q C_ A -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) |
| 52 |
9 24 51
|
syl2an |
|- ( ( q e. HAtoms /\ ( c e. CH /\ p e. HAtoms ) ) -> ( A C_ c -> ( q C_ A -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) |
| 53 |
52
|
adantlr |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( A C_ c -> ( q C_ A -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) |
| 54 |
21 53
|
syl7 |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( A C_ c -> ( ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) |
| 55 |
54
|
imp44 |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> ( q vH p ) C_ c ) |
| 56 |
20 55
|
sstrd |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> r C_ c ) |
| 57 |
|
simplrr |
|- ( ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) -> r C_ B ) |
| 58 |
57
|
ad2antlr |
|- ( ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) -> r C_ B ) |
| 59 |
58
|
adantl |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> r C_ B ) |
| 60 |
56 59
|
ssind |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> r C_ ( c i^i B ) ) |
| 61 |
|
atelch |
|- ( r e. HAtoms -> r e. CH ) |
| 62 |
9 61
|
anim12i |
|- ( ( q e. HAtoms /\ r e. HAtoms ) -> ( q e. CH /\ r e. CH ) ) |
| 63 |
|
chincl |
|- ( ( c e. CH /\ B e. CH ) -> ( c i^i B ) e. CH ) |
| 64 |
2 63
|
mpan2 |
|- ( c e. CH -> ( c i^i B ) e. CH ) |
| 65 |
|
chlej1 |
|- ( ( ( r e. CH /\ ( c i^i B ) e. CH /\ q e. CH ) /\ r C_ ( c i^i B ) ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) |
| 66 |
65
|
ex |
|- ( ( r e. CH /\ ( c i^i B ) e. CH /\ q e. CH ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) |
| 67 |
64 66
|
syl3an2 |
|- ( ( r e. CH /\ c e. CH /\ q e. CH ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) |
| 68 |
67
|
3comr |
|- ( ( q e. CH /\ r e. CH /\ c e. CH ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) |
| 69 |
68
|
3expa |
|- ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) |
| 70 |
69
|
adantr |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) |
| 71 |
|
chlej2 |
|- ( ( ( q e. CH /\ A e. CH /\ ( c i^i B ) e. CH ) /\ q C_ A ) -> ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) ) |
| 72 |
1 71
|
mp3anl2 |
|- ( ( ( q e. CH /\ ( c i^i B ) e. CH ) /\ q C_ A ) -> ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) ) |
| 73 |
64 72
|
sylanl2 |
|- ( ( ( q e. CH /\ c e. CH ) /\ q C_ A ) -> ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) ) |
| 74 |
73
|
adantllr |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) ) |
| 75 |
|
sstr2 |
|- ( ( r vH q ) C_ ( ( c i^i B ) vH q ) -> ( ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) -> ( r vH q ) C_ ( ( c i^i B ) vH A ) ) ) |
| 76 |
74 75
|
syl5com |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( ( r vH q ) C_ ( ( c i^i B ) vH q ) -> ( r vH q ) C_ ( ( c i^i B ) vH A ) ) ) |
| 77 |
|
chjcom |
|- ( ( q e. CH /\ r e. CH ) -> ( q vH r ) = ( r vH q ) ) |
| 78 |
77
|
ad2antrr |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( q vH r ) = ( r vH q ) ) |
| 79 |
78
|
sseq1d |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( ( q vH r ) C_ ( ( c i^i B ) vH A ) <-> ( r vH q ) C_ ( ( c i^i B ) vH A ) ) ) |
| 80 |
76 79
|
sylibrd |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( ( r vH q ) C_ ( ( c i^i B ) vH q ) -> ( q vH r ) C_ ( ( c i^i B ) vH A ) ) ) |
| 81 |
70 80
|
syld |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( r C_ ( c i^i B ) -> ( q vH r ) C_ ( ( c i^i B ) vH A ) ) ) |
| 82 |
81
|
adantrl |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ ( p C_ ( q vH r ) /\ q C_ A ) ) -> ( r C_ ( c i^i B ) -> ( q vH r ) C_ ( ( c i^i B ) vH A ) ) ) |
| 83 |
|
sstr2 |
|- ( p C_ ( q vH r ) -> ( ( q vH r ) C_ ( ( c i^i B ) vH A ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
| 84 |
83
|
ad2antrl |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ ( p C_ ( q vH r ) /\ q C_ A ) ) -> ( ( q vH r ) C_ ( ( c i^i B ) vH A ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
| 85 |
82 84
|
syld |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ ( p C_ ( q vH r ) /\ q C_ A ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
| 86 |
85
|
exp32 |
|- ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) -> ( p C_ ( q vH r ) -> ( q C_ A -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) |
| 87 |
62 86
|
sylan |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ c e. CH ) -> ( p C_ ( q vH r ) -> ( q C_ A -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) |
| 88 |
87
|
adantrr |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( p C_ ( q vH r ) -> ( q C_ A -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) |
| 89 |
88
|
imp31 |
|- ( ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ p C_ ( q vH r ) ) /\ q C_ A ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
| 90 |
89
|
adantrr |
|- ( ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ p C_ ( q vH r ) ) /\ ( q C_ A /\ r C_ B ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
| 91 |
90
|
anasss |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
| 92 |
91
|
adantrr |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
| 93 |
92
|
adantrl |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
| 94 |
93
|
adantrr |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
| 95 |
60 94
|
mpd |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> p C_ ( ( c i^i B ) vH A ) ) |
| 96 |
95
|
exp32 |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
| 97 |
96
|
exp4d |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( A C_ c -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) |
| 98 |
97
|
exp32 |
|- ( ( q e. HAtoms /\ r e. HAtoms ) -> ( c e. CH -> ( p e. HAtoms -> ( A C_ c -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) ) ) |
| 99 |
98
|
com34 |
|- ( ( q e. HAtoms /\ r e. HAtoms ) -> ( c e. CH -> ( A C_ c -> ( p e. HAtoms -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) ) ) |
| 100 |
99
|
imp4c |
|- ( ( q e. HAtoms /\ r e. HAtoms ) -> ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) |
| 101 |
100
|
com24 |
|- ( ( q e. HAtoms /\ r e. HAtoms ) -> ( -. q = p -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) |