Step |
Hyp |
Ref |
Expression |
1 |
|
mdsymlem1.1 |
|- A e. CH |
2 |
|
mdsymlem1.2 |
|- B e. CH |
3 |
|
mdsymlem1.3 |
|- C = ( A vH p ) |
4 |
|
df-ne |
|- ( q =/= p <-> -. q = p ) |
5 |
|
atnemeq0 |
|- ( ( q e. HAtoms /\ p e. HAtoms ) -> ( q =/= p <-> ( q i^i p ) = 0H ) ) |
6 |
4 5
|
bitr3id |
|- ( ( q e. HAtoms /\ p e. HAtoms ) -> ( -. q = p <-> ( q i^i p ) = 0H ) ) |
7 |
6
|
anbi2d |
|- ( ( q e. HAtoms /\ p e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ -. q = p ) <-> ( p C_ ( q vH r ) /\ ( q i^i p ) = 0H ) ) ) |
8 |
7
|
3adant3 |
|- ( ( q e. HAtoms /\ p e. HAtoms /\ r e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ -. q = p ) <-> ( p C_ ( q vH r ) /\ ( q i^i p ) = 0H ) ) ) |
9 |
|
atelch |
|- ( q e. HAtoms -> q e. CH ) |
10 |
|
atexch |
|- ( ( q e. CH /\ p e. HAtoms /\ r e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ ( q i^i p ) = 0H ) -> r C_ ( q vH p ) ) ) |
11 |
9 10
|
syl3an1 |
|- ( ( q e. HAtoms /\ p e. HAtoms /\ r e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ ( q i^i p ) = 0H ) -> r C_ ( q vH p ) ) ) |
12 |
8 11
|
sylbid |
|- ( ( q e. HAtoms /\ p e. HAtoms /\ r e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ -. q = p ) -> r C_ ( q vH p ) ) ) |
13 |
12
|
expd |
|- ( ( q e. HAtoms /\ p e. HAtoms /\ r e. HAtoms ) -> ( p C_ ( q vH r ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) |
14 |
13
|
3com23 |
|- ( ( q e. HAtoms /\ r e. HAtoms /\ p e. HAtoms ) -> ( p C_ ( q vH r ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) |
15 |
14
|
3expa |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ p e. HAtoms ) -> ( p C_ ( q vH r ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) |
16 |
15
|
adantrl |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( p C_ ( q vH r ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) |
17 |
16
|
adantrd |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) |
18 |
17
|
imp32 |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) -> r C_ ( q vH p ) ) |
19 |
18
|
adantrl |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) ) -> r C_ ( q vH p ) ) |
20 |
19
|
adantrr |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> r C_ ( q vH p ) ) |
21 |
|
simplrl |
|- ( ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) -> q C_ A ) |
22 |
|
atelch |
|- ( p e. HAtoms -> p e. CH ) |
23 |
22
|
anim1i |
|- ( ( p e. HAtoms /\ c e. CH ) -> ( p e. CH /\ c e. CH ) ) |
24 |
23
|
ancoms |
|- ( ( c e. CH /\ p e. HAtoms ) -> ( p e. CH /\ c e. CH ) ) |
25 |
|
chub2 |
|- ( ( A e. CH /\ c e. CH ) -> A C_ ( c vH A ) ) |
26 |
1 25
|
mpan |
|- ( c e. CH -> A C_ ( c vH A ) ) |
27 |
|
sstr |
|- ( ( q C_ A /\ A C_ ( c vH A ) ) -> q C_ ( c vH A ) ) |
28 |
26 27
|
sylan2 |
|- ( ( q C_ A /\ c e. CH ) -> q C_ ( c vH A ) ) |
29 |
|
chub1 |
|- ( ( c e. CH /\ A e. CH ) -> c C_ ( c vH A ) ) |
30 |
1 29
|
mpan2 |
|- ( c e. CH -> c C_ ( c vH A ) ) |
31 |
|
sstr |
|- ( ( p C_ c /\ c C_ ( c vH A ) ) -> p C_ ( c vH A ) ) |
32 |
30 31
|
sylan2 |
|- ( ( p C_ c /\ c e. CH ) -> p C_ ( c vH A ) ) |
33 |
28 32
|
anim12i |
|- ( ( ( q C_ A /\ c e. CH ) /\ ( p C_ c /\ c e. CH ) ) -> ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) ) |
34 |
33
|
anandirs |
|- ( ( ( q C_ A /\ p C_ c ) /\ c e. CH ) -> ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) ) |
35 |
34
|
ancoms |
|- ( ( c e. CH /\ ( q C_ A /\ p C_ c ) ) -> ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) ) |
36 |
35
|
adantll |
|- ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( q C_ A /\ p C_ c ) ) -> ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) ) |
37 |
|
chjcl |
|- ( ( c e. CH /\ A e. CH ) -> ( c vH A ) e. CH ) |
38 |
1 37
|
mpan2 |
|- ( c e. CH -> ( c vH A ) e. CH ) |
39 |
|
chlub |
|- ( ( q e. CH /\ p e. CH /\ ( c vH A ) e. CH ) -> ( ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) <-> ( q vH p ) C_ ( c vH A ) ) ) |
40 |
38 39
|
syl3an3 |
|- ( ( q e. CH /\ p e. CH /\ c e. CH ) -> ( ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) <-> ( q vH p ) C_ ( c vH A ) ) ) |
41 |
40
|
3expa |
|- ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) -> ( ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) <-> ( q vH p ) C_ ( c vH A ) ) ) |
42 |
41
|
adantr |
|- ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( q C_ A /\ p C_ c ) ) -> ( ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) <-> ( q vH p ) C_ ( c vH A ) ) ) |
43 |
36 42
|
mpbid |
|- ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( q C_ A /\ p C_ c ) ) -> ( q vH p ) C_ ( c vH A ) ) |
44 |
43
|
adantrl |
|- ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( A C_ c /\ ( q C_ A /\ p C_ c ) ) ) -> ( q vH p ) C_ ( c vH A ) ) |
45 |
|
chlejb2 |
|- ( ( A e. CH /\ c e. CH ) -> ( A C_ c <-> ( c vH A ) = c ) ) |
46 |
1 45
|
mpan |
|- ( c e. CH -> ( A C_ c <-> ( c vH A ) = c ) ) |
47 |
46
|
biimpa |
|- ( ( c e. CH /\ A C_ c ) -> ( c vH A ) = c ) |
48 |
47
|
ad2ant2lr |
|- ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( A C_ c /\ ( q C_ A /\ p C_ c ) ) ) -> ( c vH A ) = c ) |
49 |
44 48
|
sseqtrd |
|- ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( A C_ c /\ ( q C_ A /\ p C_ c ) ) ) -> ( q vH p ) C_ c ) |
50 |
49
|
exp45 |
|- ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) -> ( A C_ c -> ( q C_ A -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) |
51 |
50
|
anasss |
|- ( ( q e. CH /\ ( p e. CH /\ c e. CH ) ) -> ( A C_ c -> ( q C_ A -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) |
52 |
9 24 51
|
syl2an |
|- ( ( q e. HAtoms /\ ( c e. CH /\ p e. HAtoms ) ) -> ( A C_ c -> ( q C_ A -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) |
53 |
52
|
adantlr |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( A C_ c -> ( q C_ A -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) |
54 |
21 53
|
syl7 |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( A C_ c -> ( ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) |
55 |
54
|
imp44 |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> ( q vH p ) C_ c ) |
56 |
20 55
|
sstrd |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> r C_ c ) |
57 |
|
simplrr |
|- ( ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) -> r C_ B ) |
58 |
57
|
ad2antlr |
|- ( ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) -> r C_ B ) |
59 |
58
|
adantl |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> r C_ B ) |
60 |
56 59
|
ssind |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> r C_ ( c i^i B ) ) |
61 |
|
atelch |
|- ( r e. HAtoms -> r e. CH ) |
62 |
9 61
|
anim12i |
|- ( ( q e. HAtoms /\ r e. HAtoms ) -> ( q e. CH /\ r e. CH ) ) |
63 |
|
chincl |
|- ( ( c e. CH /\ B e. CH ) -> ( c i^i B ) e. CH ) |
64 |
2 63
|
mpan2 |
|- ( c e. CH -> ( c i^i B ) e. CH ) |
65 |
|
chlej1 |
|- ( ( ( r e. CH /\ ( c i^i B ) e. CH /\ q e. CH ) /\ r C_ ( c i^i B ) ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) |
66 |
65
|
ex |
|- ( ( r e. CH /\ ( c i^i B ) e. CH /\ q e. CH ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) |
67 |
64 66
|
syl3an2 |
|- ( ( r e. CH /\ c e. CH /\ q e. CH ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) |
68 |
67
|
3comr |
|- ( ( q e. CH /\ r e. CH /\ c e. CH ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) |
69 |
68
|
3expa |
|- ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) |
70 |
69
|
adantr |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) |
71 |
|
chlej2 |
|- ( ( ( q e. CH /\ A e. CH /\ ( c i^i B ) e. CH ) /\ q C_ A ) -> ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) ) |
72 |
1 71
|
mp3anl2 |
|- ( ( ( q e. CH /\ ( c i^i B ) e. CH ) /\ q C_ A ) -> ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) ) |
73 |
64 72
|
sylanl2 |
|- ( ( ( q e. CH /\ c e. CH ) /\ q C_ A ) -> ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) ) |
74 |
73
|
adantllr |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) ) |
75 |
|
sstr2 |
|- ( ( r vH q ) C_ ( ( c i^i B ) vH q ) -> ( ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) -> ( r vH q ) C_ ( ( c i^i B ) vH A ) ) ) |
76 |
74 75
|
syl5com |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( ( r vH q ) C_ ( ( c i^i B ) vH q ) -> ( r vH q ) C_ ( ( c i^i B ) vH A ) ) ) |
77 |
|
chjcom |
|- ( ( q e. CH /\ r e. CH ) -> ( q vH r ) = ( r vH q ) ) |
78 |
77
|
ad2antrr |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( q vH r ) = ( r vH q ) ) |
79 |
78
|
sseq1d |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( ( q vH r ) C_ ( ( c i^i B ) vH A ) <-> ( r vH q ) C_ ( ( c i^i B ) vH A ) ) ) |
80 |
76 79
|
sylibrd |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( ( r vH q ) C_ ( ( c i^i B ) vH q ) -> ( q vH r ) C_ ( ( c i^i B ) vH A ) ) ) |
81 |
70 80
|
syld |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( r C_ ( c i^i B ) -> ( q vH r ) C_ ( ( c i^i B ) vH A ) ) ) |
82 |
81
|
adantrl |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ ( p C_ ( q vH r ) /\ q C_ A ) ) -> ( r C_ ( c i^i B ) -> ( q vH r ) C_ ( ( c i^i B ) vH A ) ) ) |
83 |
|
sstr2 |
|- ( p C_ ( q vH r ) -> ( ( q vH r ) C_ ( ( c i^i B ) vH A ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
84 |
83
|
ad2antrl |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ ( p C_ ( q vH r ) /\ q C_ A ) ) -> ( ( q vH r ) C_ ( ( c i^i B ) vH A ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
85 |
82 84
|
syld |
|- ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ ( p C_ ( q vH r ) /\ q C_ A ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
86 |
85
|
exp32 |
|- ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) -> ( p C_ ( q vH r ) -> ( q C_ A -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) |
87 |
62 86
|
sylan |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ c e. CH ) -> ( p C_ ( q vH r ) -> ( q C_ A -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) |
88 |
87
|
adantrr |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( p C_ ( q vH r ) -> ( q C_ A -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) |
89 |
88
|
imp31 |
|- ( ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ p C_ ( q vH r ) ) /\ q C_ A ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
90 |
89
|
adantrr |
|- ( ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ p C_ ( q vH r ) ) /\ ( q C_ A /\ r C_ B ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
91 |
90
|
anasss |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
92 |
91
|
adantrr |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
93 |
92
|
adantrl |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
94 |
93
|
adantrr |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
95 |
60 94
|
mpd |
|- ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> p C_ ( ( c i^i B ) vH A ) ) |
96 |
95
|
exp32 |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
97 |
96
|
exp4d |
|- ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( A C_ c -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) |
98 |
97
|
exp32 |
|- ( ( q e. HAtoms /\ r e. HAtoms ) -> ( c e. CH -> ( p e. HAtoms -> ( A C_ c -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) ) ) |
99 |
98
|
com34 |
|- ( ( q e. HAtoms /\ r e. HAtoms ) -> ( c e. CH -> ( A C_ c -> ( p e. HAtoms -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) ) ) |
100 |
99
|
imp4c |
|- ( ( q e. HAtoms /\ r e. HAtoms ) -> ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) |
101 |
100
|
com24 |
|- ( ( q e. HAtoms /\ r e. HAtoms ) -> ( -. q = p -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) |