| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdsymlem1.1 |  |-  A e. CH | 
						
							| 2 |  | mdsymlem1.2 |  |-  B e. CH | 
						
							| 3 |  | mdsymlem1.3 |  |-  C = ( A vH p ) | 
						
							| 4 |  | df-ne |  |-  ( q =/= p <-> -. q = p ) | 
						
							| 5 |  | atnemeq0 |  |-  ( ( q e. HAtoms /\ p e. HAtoms ) -> ( q =/= p <-> ( q i^i p ) = 0H ) ) | 
						
							| 6 | 4 5 | bitr3id |  |-  ( ( q e. HAtoms /\ p e. HAtoms ) -> ( -. q = p <-> ( q i^i p ) = 0H ) ) | 
						
							| 7 | 6 | anbi2d |  |-  ( ( q e. HAtoms /\ p e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ -. q = p ) <-> ( p C_ ( q vH r ) /\ ( q i^i p ) = 0H ) ) ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( q e. HAtoms /\ p e. HAtoms /\ r e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ -. q = p ) <-> ( p C_ ( q vH r ) /\ ( q i^i p ) = 0H ) ) ) | 
						
							| 9 |  | atelch |  |-  ( q e. HAtoms -> q e. CH ) | 
						
							| 10 |  | atexch |  |-  ( ( q e. CH /\ p e. HAtoms /\ r e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ ( q i^i p ) = 0H ) -> r C_ ( q vH p ) ) ) | 
						
							| 11 | 9 10 | syl3an1 |  |-  ( ( q e. HAtoms /\ p e. HAtoms /\ r e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ ( q i^i p ) = 0H ) -> r C_ ( q vH p ) ) ) | 
						
							| 12 | 8 11 | sylbid |  |-  ( ( q e. HAtoms /\ p e. HAtoms /\ r e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ -. q = p ) -> r C_ ( q vH p ) ) ) | 
						
							| 13 | 12 | expd |  |-  ( ( q e. HAtoms /\ p e. HAtoms /\ r e. HAtoms ) -> ( p C_ ( q vH r ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) | 
						
							| 14 | 13 | 3com23 |  |-  ( ( q e. HAtoms /\ r e. HAtoms /\ p e. HAtoms ) -> ( p C_ ( q vH r ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) | 
						
							| 15 | 14 | 3expa |  |-  ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ p e. HAtoms ) -> ( p C_ ( q vH r ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) | 
						
							| 16 | 15 | adantrl |  |-  ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( p C_ ( q vH r ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) | 
						
							| 17 | 16 | adantrd |  |-  ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> r C_ ( q vH p ) ) ) ) | 
						
							| 18 | 17 | imp32 |  |-  ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) -> r C_ ( q vH p ) ) | 
						
							| 19 | 18 | adantrl |  |-  ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) ) -> r C_ ( q vH p ) ) | 
						
							| 20 | 19 | adantrr |  |-  ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> r C_ ( q vH p ) ) | 
						
							| 21 |  | simplrl |  |-  ( ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) -> q C_ A ) | 
						
							| 22 |  | atelch |  |-  ( p e. HAtoms -> p e. CH ) | 
						
							| 23 | 22 | anim1i |  |-  ( ( p e. HAtoms /\ c e. CH ) -> ( p e. CH /\ c e. CH ) ) | 
						
							| 24 | 23 | ancoms |  |-  ( ( c e. CH /\ p e. HAtoms ) -> ( p e. CH /\ c e. CH ) ) | 
						
							| 25 |  | chub2 |  |-  ( ( A e. CH /\ c e. CH ) -> A C_ ( c vH A ) ) | 
						
							| 26 | 1 25 | mpan |  |-  ( c e. CH -> A C_ ( c vH A ) ) | 
						
							| 27 |  | sstr |  |-  ( ( q C_ A /\ A C_ ( c vH A ) ) -> q C_ ( c vH A ) ) | 
						
							| 28 | 26 27 | sylan2 |  |-  ( ( q C_ A /\ c e. CH ) -> q C_ ( c vH A ) ) | 
						
							| 29 |  | chub1 |  |-  ( ( c e. CH /\ A e. CH ) -> c C_ ( c vH A ) ) | 
						
							| 30 | 1 29 | mpan2 |  |-  ( c e. CH -> c C_ ( c vH A ) ) | 
						
							| 31 |  | sstr |  |-  ( ( p C_ c /\ c C_ ( c vH A ) ) -> p C_ ( c vH A ) ) | 
						
							| 32 | 30 31 | sylan2 |  |-  ( ( p C_ c /\ c e. CH ) -> p C_ ( c vH A ) ) | 
						
							| 33 | 28 32 | anim12i |  |-  ( ( ( q C_ A /\ c e. CH ) /\ ( p C_ c /\ c e. CH ) ) -> ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) ) | 
						
							| 34 | 33 | anandirs |  |-  ( ( ( q C_ A /\ p C_ c ) /\ c e. CH ) -> ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) ) | 
						
							| 35 | 34 | ancoms |  |-  ( ( c e. CH /\ ( q C_ A /\ p C_ c ) ) -> ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) ) | 
						
							| 36 | 35 | adantll |  |-  ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( q C_ A /\ p C_ c ) ) -> ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) ) | 
						
							| 37 |  | chjcl |  |-  ( ( c e. CH /\ A e. CH ) -> ( c vH A ) e. CH ) | 
						
							| 38 | 1 37 | mpan2 |  |-  ( c e. CH -> ( c vH A ) e. CH ) | 
						
							| 39 |  | chlub |  |-  ( ( q e. CH /\ p e. CH /\ ( c vH A ) e. CH ) -> ( ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) <-> ( q vH p ) C_ ( c vH A ) ) ) | 
						
							| 40 | 38 39 | syl3an3 |  |-  ( ( q e. CH /\ p e. CH /\ c e. CH ) -> ( ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) <-> ( q vH p ) C_ ( c vH A ) ) ) | 
						
							| 41 | 40 | 3expa |  |-  ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) -> ( ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) <-> ( q vH p ) C_ ( c vH A ) ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( q C_ A /\ p C_ c ) ) -> ( ( q C_ ( c vH A ) /\ p C_ ( c vH A ) ) <-> ( q vH p ) C_ ( c vH A ) ) ) | 
						
							| 43 | 36 42 | mpbid |  |-  ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( q C_ A /\ p C_ c ) ) -> ( q vH p ) C_ ( c vH A ) ) | 
						
							| 44 | 43 | adantrl |  |-  ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( A C_ c /\ ( q C_ A /\ p C_ c ) ) ) -> ( q vH p ) C_ ( c vH A ) ) | 
						
							| 45 |  | chlejb2 |  |-  ( ( A e. CH /\ c e. CH ) -> ( A C_ c <-> ( c vH A ) = c ) ) | 
						
							| 46 | 1 45 | mpan |  |-  ( c e. CH -> ( A C_ c <-> ( c vH A ) = c ) ) | 
						
							| 47 | 46 | biimpa |  |-  ( ( c e. CH /\ A C_ c ) -> ( c vH A ) = c ) | 
						
							| 48 | 47 | ad2ant2lr |  |-  ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( A C_ c /\ ( q C_ A /\ p C_ c ) ) ) -> ( c vH A ) = c ) | 
						
							| 49 | 44 48 | sseqtrd |  |-  ( ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) /\ ( A C_ c /\ ( q C_ A /\ p C_ c ) ) ) -> ( q vH p ) C_ c ) | 
						
							| 50 | 49 | exp45 |  |-  ( ( ( q e. CH /\ p e. CH ) /\ c e. CH ) -> ( A C_ c -> ( q C_ A -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) | 
						
							| 51 | 50 | anasss |  |-  ( ( q e. CH /\ ( p e. CH /\ c e. CH ) ) -> ( A C_ c -> ( q C_ A -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) | 
						
							| 52 | 9 24 51 | syl2an |  |-  ( ( q e. HAtoms /\ ( c e. CH /\ p e. HAtoms ) ) -> ( A C_ c -> ( q C_ A -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) | 
						
							| 53 | 52 | adantlr |  |-  ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( A C_ c -> ( q C_ A -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) | 
						
							| 54 | 21 53 | syl7 |  |-  ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( A C_ c -> ( ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) -> ( p C_ c -> ( q vH p ) C_ c ) ) ) ) | 
						
							| 55 | 54 | imp44 |  |-  ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> ( q vH p ) C_ c ) | 
						
							| 56 | 20 55 | sstrd |  |-  ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> r C_ c ) | 
						
							| 57 |  | simplrr |  |-  ( ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) -> r C_ B ) | 
						
							| 58 | 57 | ad2antlr |  |-  ( ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) -> r C_ B ) | 
						
							| 59 | 58 | adantl |  |-  ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> r C_ B ) | 
						
							| 60 | 56 59 | ssind |  |-  ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> r C_ ( c i^i B ) ) | 
						
							| 61 |  | atelch |  |-  ( r e. HAtoms -> r e. CH ) | 
						
							| 62 | 9 61 | anim12i |  |-  ( ( q e. HAtoms /\ r e. HAtoms ) -> ( q e. CH /\ r e. CH ) ) | 
						
							| 63 |  | chincl |  |-  ( ( c e. CH /\ B e. CH ) -> ( c i^i B ) e. CH ) | 
						
							| 64 | 2 63 | mpan2 |  |-  ( c e. CH -> ( c i^i B ) e. CH ) | 
						
							| 65 |  | chlej1 |  |-  ( ( ( r e. CH /\ ( c i^i B ) e. CH /\ q e. CH ) /\ r C_ ( c i^i B ) ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) | 
						
							| 66 | 65 | ex |  |-  ( ( r e. CH /\ ( c i^i B ) e. CH /\ q e. CH ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) | 
						
							| 67 | 64 66 | syl3an2 |  |-  ( ( r e. CH /\ c e. CH /\ q e. CH ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) | 
						
							| 68 | 67 | 3comr |  |-  ( ( q e. CH /\ r e. CH /\ c e. CH ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) | 
						
							| 69 | 68 | 3expa |  |-  ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( r C_ ( c i^i B ) -> ( r vH q ) C_ ( ( c i^i B ) vH q ) ) ) | 
						
							| 71 |  | chlej2 |  |-  ( ( ( q e. CH /\ A e. CH /\ ( c i^i B ) e. CH ) /\ q C_ A ) -> ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) ) | 
						
							| 72 | 1 71 | mp3anl2 |  |-  ( ( ( q e. CH /\ ( c i^i B ) e. CH ) /\ q C_ A ) -> ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) ) | 
						
							| 73 | 64 72 | sylanl2 |  |-  ( ( ( q e. CH /\ c e. CH ) /\ q C_ A ) -> ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) ) | 
						
							| 74 | 73 | adantllr |  |-  ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) ) | 
						
							| 75 |  | sstr2 |  |-  ( ( r vH q ) C_ ( ( c i^i B ) vH q ) -> ( ( ( c i^i B ) vH q ) C_ ( ( c i^i B ) vH A ) -> ( r vH q ) C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 76 | 74 75 | syl5com |  |-  ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( ( r vH q ) C_ ( ( c i^i B ) vH q ) -> ( r vH q ) C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 77 |  | chjcom |  |-  ( ( q e. CH /\ r e. CH ) -> ( q vH r ) = ( r vH q ) ) | 
						
							| 78 | 77 | ad2antrr |  |-  ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( q vH r ) = ( r vH q ) ) | 
						
							| 79 | 78 | sseq1d |  |-  ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( ( q vH r ) C_ ( ( c i^i B ) vH A ) <-> ( r vH q ) C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 80 | 76 79 | sylibrd |  |-  ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( ( r vH q ) C_ ( ( c i^i B ) vH q ) -> ( q vH r ) C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 81 | 70 80 | syld |  |-  ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ q C_ A ) -> ( r C_ ( c i^i B ) -> ( q vH r ) C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 82 | 81 | adantrl |  |-  ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ ( p C_ ( q vH r ) /\ q C_ A ) ) -> ( r C_ ( c i^i B ) -> ( q vH r ) C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 83 |  | sstr2 |  |-  ( p C_ ( q vH r ) -> ( ( q vH r ) C_ ( ( c i^i B ) vH A ) -> p C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 84 | 83 | ad2antrl |  |-  ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ ( p C_ ( q vH r ) /\ q C_ A ) ) -> ( ( q vH r ) C_ ( ( c i^i B ) vH A ) -> p C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 85 | 82 84 | syld |  |-  ( ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) /\ ( p C_ ( q vH r ) /\ q C_ A ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 86 | 85 | exp32 |  |-  ( ( ( q e. CH /\ r e. CH ) /\ c e. CH ) -> ( p C_ ( q vH r ) -> ( q C_ A -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) | 
						
							| 87 | 62 86 | sylan |  |-  ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ c e. CH ) -> ( p C_ ( q vH r ) -> ( q C_ A -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) | 
						
							| 88 | 87 | adantrr |  |-  ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( p C_ ( q vH r ) -> ( q C_ A -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) | 
						
							| 89 | 88 | imp31 |  |-  ( ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ p C_ ( q vH r ) ) /\ q C_ A ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 90 | 89 | adantrr |  |-  ( ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ p C_ ( q vH r ) ) /\ ( q C_ A /\ r C_ B ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 91 | 90 | anasss |  |-  ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 92 | 91 | adantrr |  |-  ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 93 | 92 | adantrl |  |-  ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 94 | 93 | adantrr |  |-  ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> ( r C_ ( c i^i B ) -> p C_ ( ( c i^i B ) vH A ) ) ) | 
						
							| 95 | 60 94 | mpd |  |-  ( ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) /\ ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) /\ p C_ c ) ) -> p C_ ( ( c i^i B ) vH A ) ) | 
						
							| 96 | 95 | exp32 |  |-  ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( ( A C_ c /\ ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ -. q = p ) ) -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) | 
						
							| 97 | 96 | exp4d |  |-  ( ( ( q e. HAtoms /\ r e. HAtoms ) /\ ( c e. CH /\ p e. HAtoms ) ) -> ( A C_ c -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) | 
						
							| 98 | 97 | exp32 |  |-  ( ( q e. HAtoms /\ r e. HAtoms ) -> ( c e. CH -> ( p e. HAtoms -> ( A C_ c -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) ) ) | 
						
							| 99 | 98 | com34 |  |-  ( ( q e. HAtoms /\ r e. HAtoms ) -> ( c e. CH -> ( A C_ c -> ( p e. HAtoms -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) ) ) | 
						
							| 100 | 99 | imp4c |  |-  ( ( q e. HAtoms /\ r e. HAtoms ) -> ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( -. q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) | 
						
							| 101 | 100 | com24 |  |-  ( ( q e. HAtoms /\ r e. HAtoms ) -> ( -. q = p -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) |