Metamath Proof Explorer


Theorem mdsymlem5

Description: Lemma for mdsymi . (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdsymlem1.1 AC
mdsymlem1.2 BC
mdsymlem1.3 C=Ap
Assertion mdsymlem5 qHAtomsrHAtoms¬q=ppqrqArBcCAcpHAtomspcpcBA

Proof

Step Hyp Ref Expression
1 mdsymlem1.1 AC
2 mdsymlem1.2 BC
3 mdsymlem1.3 C=Ap
4 df-ne qp¬q=p
5 atnemeq0 qHAtomspHAtomsqpqp=0
6 4 5 bitr3id qHAtomspHAtoms¬q=pqp=0
7 6 anbi2d qHAtomspHAtomspqr¬q=ppqrqp=0
8 7 3adant3 qHAtomspHAtomsrHAtomspqr¬q=ppqrqp=0
9 atelch qHAtomsqC
10 atexch qCpHAtomsrHAtomspqrqp=0rqp
11 9 10 syl3an1 qHAtomspHAtomsrHAtomspqrqp=0rqp
12 8 11 sylbid qHAtomspHAtomsrHAtomspqr¬q=prqp
13 12 expd qHAtomspHAtomsrHAtomspqr¬q=prqp
14 13 3com23 qHAtomsrHAtomspHAtomspqr¬q=prqp
15 14 3expa qHAtomsrHAtomspHAtomspqr¬q=prqp
16 15 adantrl qHAtomsrHAtomscCpHAtomspqr¬q=prqp
17 16 adantrd qHAtomsrHAtomscCpHAtomspqrqArB¬q=prqp
18 17 imp32 qHAtomsrHAtomscCpHAtomspqrqArB¬q=prqp
19 18 adantrl qHAtomsrHAtomscCpHAtomsAcpqrqArB¬q=prqp
20 19 adantrr qHAtomsrHAtomscCpHAtomsAcpqrqArB¬q=ppcrqp
21 simplrl pqrqArB¬q=pqA
22 atelch pHAtomspC
23 22 anim1i pHAtomscCpCcC
24 23 ancoms cCpHAtomspCcC
25 chub2 ACcCAcA
26 1 25 mpan cCAcA
27 sstr qAAcAqcA
28 26 27 sylan2 qAcCqcA
29 chub1 cCACccA
30 1 29 mpan2 cCccA
31 sstr pcccApcA
32 30 31 sylan2 pccCpcA
33 28 32 anim12i qAcCpccCqcApcA
34 33 anandirs qApccCqcApcA
35 34 ancoms cCqApcqcApcA
36 35 adantll qCpCcCqApcqcApcA
37 chjcl cCACcAC
38 1 37 mpan2 cCcAC
39 chlub qCpCcACqcApcAqpcA
40 38 39 syl3an3 qCpCcCqcApcAqpcA
41 40 3expa qCpCcCqcApcAqpcA
42 41 adantr qCpCcCqApcqcApcAqpcA
43 36 42 mpbid qCpCcCqApcqpcA
44 43 adantrl qCpCcCAcqApcqpcA
45 chlejb2 ACcCAccA=c
46 1 45 mpan cCAccA=c
47 46 biimpa cCAccA=c
48 47 ad2ant2lr qCpCcCAcqApccA=c
49 44 48 sseqtrd qCpCcCAcqApcqpc
50 49 exp45 qCpCcCAcqApcqpc
51 50 anasss qCpCcCAcqApcqpc
52 9 24 51 syl2an qHAtomscCpHAtomsAcqApcqpc
53 52 adantlr qHAtomsrHAtomscCpHAtomsAcqApcqpc
54 21 53 syl7 qHAtomsrHAtomscCpHAtomsAcpqrqArB¬q=ppcqpc
55 54 imp44 qHAtomsrHAtomscCpHAtomsAcpqrqArB¬q=ppcqpc
56 20 55 sstrd qHAtomsrHAtomscCpHAtomsAcpqrqArB¬q=ppcrc
57 simplrr pqrqArB¬q=prB
58 57 ad2antlr AcpqrqArB¬q=ppcrB
59 58 adantl qHAtomsrHAtomscCpHAtomsAcpqrqArB¬q=ppcrB
60 56 59 ssind qHAtomsrHAtomscCpHAtomsAcpqrqArB¬q=ppcrcB
61 atelch rHAtomsrC
62 9 61 anim12i qHAtomsrHAtomsqCrC
63 chincl cCBCcBC
64 2 63 mpan2 cCcBC
65 chlej1 rCcBCqCrcBrqcBq
66 65 ex rCcBCqCrcBrqcBq
67 64 66 syl3an2 rCcCqCrcBrqcBq
68 67 3comr qCrCcCrcBrqcBq
69 68 3expa qCrCcCrcBrqcBq
70 69 adantr qCrCcCqArcBrqcBq
71 chlej2 qCACcBCqAcBqcBA
72 1 71 mp3anl2 qCcBCqAcBqcBA
73 64 72 sylanl2 qCcCqAcBqcBA
74 73 adantllr qCrCcCqAcBqcBA
75 sstr2 rqcBqcBqcBArqcBA
76 74 75 syl5com qCrCcCqArqcBqrqcBA
77 chjcom qCrCqr=rq
78 77 ad2antrr qCrCcCqAqr=rq
79 78 sseq1d qCrCcCqAqrcBArqcBA
80 76 79 sylibrd qCrCcCqArqcBqqrcBA
81 70 80 syld qCrCcCqArcBqrcBA
82 81 adantrl qCrCcCpqrqArcBqrcBA
83 sstr2 pqrqrcBApcBA
84 83 ad2antrl qCrCcCpqrqAqrcBApcBA
85 82 84 syld qCrCcCpqrqArcBpcBA
86 85 exp32 qCrCcCpqrqArcBpcBA
87 62 86 sylan qHAtomsrHAtomscCpqrqArcBpcBA
88 87 adantrr qHAtomsrHAtomscCpHAtomspqrqArcBpcBA
89 88 imp31 qHAtomsrHAtomscCpHAtomspqrqArcBpcBA
90 89 adantrr qHAtomsrHAtomscCpHAtomspqrqArBrcBpcBA
91 90 anasss qHAtomsrHAtomscCpHAtomspqrqArBrcBpcBA
92 91 adantrr qHAtomsrHAtomscCpHAtomspqrqArB¬q=prcBpcBA
93 92 adantrl qHAtomsrHAtomscCpHAtomsAcpqrqArB¬q=prcBpcBA
94 93 adantrr qHAtomsrHAtomscCpHAtomsAcpqrqArB¬q=ppcrcBpcBA
95 60 94 mpd qHAtomsrHAtomscCpHAtomsAcpqrqArB¬q=ppcpcBA
96 95 exp32 qHAtomsrHAtomscCpHAtomsAcpqrqArB¬q=ppcpcBA
97 96 exp4d qHAtomsrHAtomscCpHAtomsAcpqrqArB¬q=ppcpcBA
98 97 exp32 qHAtomsrHAtomscCpHAtomsAcpqrqArB¬q=ppcpcBA
99 98 com34 qHAtomsrHAtomscCAcpHAtomspqrqArB¬q=ppcpcBA
100 99 imp4c qHAtomsrHAtomscCAcpHAtomspqrqArB¬q=ppcpcBA
101 100 com24 qHAtomsrHAtoms¬q=ppqrqArBcCAcpHAtomspcpcBA