Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Cover relation, atoms, exchange axiom, and modular symmetry
Modular symmetry
mdsymlem5
Next ⟩
mdsymlem6
Metamath Proof Explorer
Ascii
Unicode
Theorem
mdsymlem5
Description:
Lemma for
mdsymi
.
(Contributed by
NM
, 2-Jul-2004)
(New usage is discouraged.)
Ref
Expression
Hypotheses
mdsymlem1.1
⊢
A
∈
C
ℋ
mdsymlem1.2
⊢
B
∈
C
ℋ
mdsymlem1.3
⊢
C
=
A
∨
ℋ
p
Assertion
mdsymlem5
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
→
¬
q
=
p
→
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
→
c
∈
C
ℋ
∧
A
⊆
c
∧
p
∈
HAtoms
→
p
⊆
c
→
p
⊆
c
∩
B
∨
ℋ
A
Proof
Step
Hyp
Ref
Expression
1
mdsymlem1.1
⊢
A
∈
C
ℋ
2
mdsymlem1.2
⊢
B
∈
C
ℋ
3
mdsymlem1.3
⊢
C
=
A
∨
ℋ
p
4
df-ne
⊢
q
≠
p
↔
¬
q
=
p
5
atnemeq0
⊢
q
∈
HAtoms
∧
p
∈
HAtoms
→
q
≠
p
↔
q
∩
p
=
0
ℋ
6
4
5
bitr3id
⊢
q
∈
HAtoms
∧
p
∈
HAtoms
→
¬
q
=
p
↔
q
∩
p
=
0
ℋ
7
6
anbi2d
⊢
q
∈
HAtoms
∧
p
∈
HAtoms
→
p
⊆
q
∨
ℋ
r
∧
¬
q
=
p
↔
p
⊆
q
∨
ℋ
r
∧
q
∩
p
=
0
ℋ
8
7
3adant3
⊢
q
∈
HAtoms
∧
p
∈
HAtoms
∧
r
∈
HAtoms
→
p
⊆
q
∨
ℋ
r
∧
¬
q
=
p
↔
p
⊆
q
∨
ℋ
r
∧
q
∩
p
=
0
ℋ
9
atelch
⊢
q
∈
HAtoms
→
q
∈
C
ℋ
10
atexch
⊢
q
∈
C
ℋ
∧
p
∈
HAtoms
∧
r
∈
HAtoms
→
p
⊆
q
∨
ℋ
r
∧
q
∩
p
=
0
ℋ
→
r
⊆
q
∨
ℋ
p
11
9
10
syl3an1
⊢
q
∈
HAtoms
∧
p
∈
HAtoms
∧
r
∈
HAtoms
→
p
⊆
q
∨
ℋ
r
∧
q
∩
p
=
0
ℋ
→
r
⊆
q
∨
ℋ
p
12
8
11
sylbid
⊢
q
∈
HAtoms
∧
p
∈
HAtoms
∧
r
∈
HAtoms
→
p
⊆
q
∨
ℋ
r
∧
¬
q
=
p
→
r
⊆
q
∨
ℋ
p
13
12
expd
⊢
q
∈
HAtoms
∧
p
∈
HAtoms
∧
r
∈
HAtoms
→
p
⊆
q
∨
ℋ
r
→
¬
q
=
p
→
r
⊆
q
∨
ℋ
p
14
13
3com23
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
p
∈
HAtoms
→
p
⊆
q
∨
ℋ
r
→
¬
q
=
p
→
r
⊆
q
∨
ℋ
p
15
14
3expa
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
p
∈
HAtoms
→
p
⊆
q
∨
ℋ
r
→
¬
q
=
p
→
r
⊆
q
∨
ℋ
p
16
15
adantrl
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
→
p
⊆
q
∨
ℋ
r
→
¬
q
=
p
→
r
⊆
q
∨
ℋ
p
17
16
adantrd
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
→
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
→
¬
q
=
p
→
r
⊆
q
∨
ℋ
p
18
17
imp32
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
→
r
⊆
q
∨
ℋ
p
19
18
adantrl
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
∧
A
⊆
c
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
→
r
⊆
q
∨
ℋ
p
20
19
adantrr
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
∧
A
⊆
c
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
∧
p
⊆
c
→
r
⊆
q
∨
ℋ
p
21
simplrl
⊢
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
→
q
⊆
A
22
atelch
⊢
p
∈
HAtoms
→
p
∈
C
ℋ
23
22
anim1i
⊢
p
∈
HAtoms
∧
c
∈
C
ℋ
→
p
∈
C
ℋ
∧
c
∈
C
ℋ
24
23
ancoms
⊢
c
∈
C
ℋ
∧
p
∈
HAtoms
→
p
∈
C
ℋ
∧
c
∈
C
ℋ
25
chub2
⊢
A
∈
C
ℋ
∧
c
∈
C
ℋ
→
A
⊆
c
∨
ℋ
A
26
1
25
mpan
⊢
c
∈
C
ℋ
→
A
⊆
c
∨
ℋ
A
27
sstr
⊢
q
⊆
A
∧
A
⊆
c
∨
ℋ
A
→
q
⊆
c
∨
ℋ
A
28
26
27
sylan2
⊢
q
⊆
A
∧
c
∈
C
ℋ
→
q
⊆
c
∨
ℋ
A
29
chub1
⊢
c
∈
C
ℋ
∧
A
∈
C
ℋ
→
c
⊆
c
∨
ℋ
A
30
1
29
mpan2
⊢
c
∈
C
ℋ
→
c
⊆
c
∨
ℋ
A
31
sstr
⊢
p
⊆
c
∧
c
⊆
c
∨
ℋ
A
→
p
⊆
c
∨
ℋ
A
32
30
31
sylan2
⊢
p
⊆
c
∧
c
∈
C
ℋ
→
p
⊆
c
∨
ℋ
A
33
28
32
anim12i
⊢
q
⊆
A
∧
c
∈
C
ℋ
∧
p
⊆
c
∧
c
∈
C
ℋ
→
q
⊆
c
∨
ℋ
A
∧
p
⊆
c
∨
ℋ
A
34
33
anandirs
⊢
q
⊆
A
∧
p
⊆
c
∧
c
∈
C
ℋ
→
q
⊆
c
∨
ℋ
A
∧
p
⊆
c
∨
ℋ
A
35
34
ancoms
⊢
c
∈
C
ℋ
∧
q
⊆
A
∧
p
⊆
c
→
q
⊆
c
∨
ℋ
A
∧
p
⊆
c
∨
ℋ
A
36
35
adantll
⊢
q
∈
C
ℋ
∧
p
∈
C
ℋ
∧
c
∈
C
ℋ
∧
q
⊆
A
∧
p
⊆
c
→
q
⊆
c
∨
ℋ
A
∧
p
⊆
c
∨
ℋ
A
37
chjcl
⊢
c
∈
C
ℋ
∧
A
∈
C
ℋ
→
c
∨
ℋ
A
∈
C
ℋ
38
1
37
mpan2
⊢
c
∈
C
ℋ
→
c
∨
ℋ
A
∈
C
ℋ
39
chlub
⊢
q
∈
C
ℋ
∧
p
∈
C
ℋ
∧
c
∨
ℋ
A
∈
C
ℋ
→
q
⊆
c
∨
ℋ
A
∧
p
⊆
c
∨
ℋ
A
↔
q
∨
ℋ
p
⊆
c
∨
ℋ
A
40
38
39
syl3an3
⊢
q
∈
C
ℋ
∧
p
∈
C
ℋ
∧
c
∈
C
ℋ
→
q
⊆
c
∨
ℋ
A
∧
p
⊆
c
∨
ℋ
A
↔
q
∨
ℋ
p
⊆
c
∨
ℋ
A
41
40
3expa
⊢
q
∈
C
ℋ
∧
p
∈
C
ℋ
∧
c
∈
C
ℋ
→
q
⊆
c
∨
ℋ
A
∧
p
⊆
c
∨
ℋ
A
↔
q
∨
ℋ
p
⊆
c
∨
ℋ
A
42
41
adantr
⊢
q
∈
C
ℋ
∧
p
∈
C
ℋ
∧
c
∈
C
ℋ
∧
q
⊆
A
∧
p
⊆
c
→
q
⊆
c
∨
ℋ
A
∧
p
⊆
c
∨
ℋ
A
↔
q
∨
ℋ
p
⊆
c
∨
ℋ
A
43
36
42
mpbid
⊢
q
∈
C
ℋ
∧
p
∈
C
ℋ
∧
c
∈
C
ℋ
∧
q
⊆
A
∧
p
⊆
c
→
q
∨
ℋ
p
⊆
c
∨
ℋ
A
44
43
adantrl
⊢
q
∈
C
ℋ
∧
p
∈
C
ℋ
∧
c
∈
C
ℋ
∧
A
⊆
c
∧
q
⊆
A
∧
p
⊆
c
→
q
∨
ℋ
p
⊆
c
∨
ℋ
A
45
chlejb2
⊢
A
∈
C
ℋ
∧
c
∈
C
ℋ
→
A
⊆
c
↔
c
∨
ℋ
A
=
c
46
1
45
mpan
⊢
c
∈
C
ℋ
→
A
⊆
c
↔
c
∨
ℋ
A
=
c
47
46
biimpa
⊢
c
∈
C
ℋ
∧
A
⊆
c
→
c
∨
ℋ
A
=
c
48
47
ad2ant2lr
⊢
q
∈
C
ℋ
∧
p
∈
C
ℋ
∧
c
∈
C
ℋ
∧
A
⊆
c
∧
q
⊆
A
∧
p
⊆
c
→
c
∨
ℋ
A
=
c
49
44
48
sseqtrd
⊢
q
∈
C
ℋ
∧
p
∈
C
ℋ
∧
c
∈
C
ℋ
∧
A
⊆
c
∧
q
⊆
A
∧
p
⊆
c
→
q
∨
ℋ
p
⊆
c
50
49
exp45
⊢
q
∈
C
ℋ
∧
p
∈
C
ℋ
∧
c
∈
C
ℋ
→
A
⊆
c
→
q
⊆
A
→
p
⊆
c
→
q
∨
ℋ
p
⊆
c
51
50
anasss
⊢
q
∈
C
ℋ
∧
p
∈
C
ℋ
∧
c
∈
C
ℋ
→
A
⊆
c
→
q
⊆
A
→
p
⊆
c
→
q
∨
ℋ
p
⊆
c
52
9
24
51
syl2an
⊢
q
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
→
A
⊆
c
→
q
⊆
A
→
p
⊆
c
→
q
∨
ℋ
p
⊆
c
53
52
adantlr
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
→
A
⊆
c
→
q
⊆
A
→
p
⊆
c
→
q
∨
ℋ
p
⊆
c
54
21
53
syl7
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
→
A
⊆
c
→
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
→
p
⊆
c
→
q
∨
ℋ
p
⊆
c
55
54
imp44
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
∧
A
⊆
c
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
∧
p
⊆
c
→
q
∨
ℋ
p
⊆
c
56
20
55
sstrd
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
∧
A
⊆
c
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
∧
p
⊆
c
→
r
⊆
c
57
simplrr
⊢
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
→
r
⊆
B
58
57
ad2antlr
⊢
A
⊆
c
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
∧
p
⊆
c
→
r
⊆
B
59
58
adantl
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
∧
A
⊆
c
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
∧
p
⊆
c
→
r
⊆
B
60
56
59
ssind
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
∧
A
⊆
c
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
∧
p
⊆
c
→
r
⊆
c
∩
B
61
atelch
⊢
r
∈
HAtoms
→
r
∈
C
ℋ
62
9
61
anim12i
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
→
q
∈
C
ℋ
∧
r
∈
C
ℋ
63
chincl
⊢
c
∈
C
ℋ
∧
B
∈
C
ℋ
→
c
∩
B
∈
C
ℋ
64
2
63
mpan2
⊢
c
∈
C
ℋ
→
c
∩
B
∈
C
ℋ
65
chlej1
⊢
r
∈
C
ℋ
∧
c
∩
B
∈
C
ℋ
∧
q
∈
C
ℋ
∧
r
⊆
c
∩
B
→
r
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
q
66
65
ex
⊢
r
∈
C
ℋ
∧
c
∩
B
∈
C
ℋ
∧
q
∈
C
ℋ
→
r
⊆
c
∩
B
→
r
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
q
67
64
66
syl3an2
⊢
r
∈
C
ℋ
∧
c
∈
C
ℋ
∧
q
∈
C
ℋ
→
r
⊆
c
∩
B
→
r
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
q
68
67
3comr
⊢
q
∈
C
ℋ
∧
r
∈
C
ℋ
∧
c
∈
C
ℋ
→
r
⊆
c
∩
B
→
r
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
q
69
68
3expa
⊢
q
∈
C
ℋ
∧
r
∈
C
ℋ
∧
c
∈
C
ℋ
→
r
⊆
c
∩
B
→
r
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
q
70
69
adantr
⊢
q
∈
C
ℋ
∧
r
∈
C
ℋ
∧
c
∈
C
ℋ
∧
q
⊆
A
→
r
⊆
c
∩
B
→
r
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
q
71
chlej2
⊢
q
∈
C
ℋ
∧
A
∈
C
ℋ
∧
c
∩
B
∈
C
ℋ
∧
q
⊆
A
→
c
∩
B
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
A
72
1
71
mp3anl2
⊢
q
∈
C
ℋ
∧
c
∩
B
∈
C
ℋ
∧
q
⊆
A
→
c
∩
B
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
A
73
64
72
sylanl2
⊢
q
∈
C
ℋ
∧
c
∈
C
ℋ
∧
q
⊆
A
→
c
∩
B
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
A
74
73
adantllr
⊢
q
∈
C
ℋ
∧
r
∈
C
ℋ
∧
c
∈
C
ℋ
∧
q
⊆
A
→
c
∩
B
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
A
75
sstr2
⊢
r
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
q
→
c
∩
B
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
A
→
r
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
A
76
74
75
syl5com
⊢
q
∈
C
ℋ
∧
r
∈
C
ℋ
∧
c
∈
C
ℋ
∧
q
⊆
A
→
r
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
q
→
r
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
A
77
chjcom
⊢
q
∈
C
ℋ
∧
r
∈
C
ℋ
→
q
∨
ℋ
r
=
r
∨
ℋ
q
78
77
ad2antrr
⊢
q
∈
C
ℋ
∧
r
∈
C
ℋ
∧
c
∈
C
ℋ
∧
q
⊆
A
→
q
∨
ℋ
r
=
r
∨
ℋ
q
79
78
sseq1d
⊢
q
∈
C
ℋ
∧
r
∈
C
ℋ
∧
c
∈
C
ℋ
∧
q
⊆
A
→
q
∨
ℋ
r
⊆
c
∩
B
∨
ℋ
A
↔
r
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
A
80
76
79
sylibrd
⊢
q
∈
C
ℋ
∧
r
∈
C
ℋ
∧
c
∈
C
ℋ
∧
q
⊆
A
→
r
∨
ℋ
q
⊆
c
∩
B
∨
ℋ
q
→
q
∨
ℋ
r
⊆
c
∩
B
∨
ℋ
A
81
70
80
syld
⊢
q
∈
C
ℋ
∧
r
∈
C
ℋ
∧
c
∈
C
ℋ
∧
q
⊆
A
→
r
⊆
c
∩
B
→
q
∨
ℋ
r
⊆
c
∩
B
∨
ℋ
A
82
81
adantrl
⊢
q
∈
C
ℋ
∧
r
∈
C
ℋ
∧
c
∈
C
ℋ
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
→
r
⊆
c
∩
B
→
q
∨
ℋ
r
⊆
c
∩
B
∨
ℋ
A
83
sstr2
⊢
p
⊆
q
∨
ℋ
r
→
q
∨
ℋ
r
⊆
c
∩
B
∨
ℋ
A
→
p
⊆
c
∩
B
∨
ℋ
A
84
83
ad2antrl
⊢
q
∈
C
ℋ
∧
r
∈
C
ℋ
∧
c
∈
C
ℋ
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
→
q
∨
ℋ
r
⊆
c
∩
B
∨
ℋ
A
→
p
⊆
c
∩
B
∨
ℋ
A
85
82
84
syld
⊢
q
∈
C
ℋ
∧
r
∈
C
ℋ
∧
c
∈
C
ℋ
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
→
r
⊆
c
∩
B
→
p
⊆
c
∩
B
∨
ℋ
A
86
85
exp32
⊢
q
∈
C
ℋ
∧
r
∈
C
ℋ
∧
c
∈
C
ℋ
→
p
⊆
q
∨
ℋ
r
→
q
⊆
A
→
r
⊆
c
∩
B
→
p
⊆
c
∩
B
∨
ℋ
A
87
62
86
sylan
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
→
p
⊆
q
∨
ℋ
r
→
q
⊆
A
→
r
⊆
c
∩
B
→
p
⊆
c
∩
B
∨
ℋ
A
88
87
adantrr
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
→
p
⊆
q
∨
ℋ
r
→
q
⊆
A
→
r
⊆
c
∩
B
→
p
⊆
c
∩
B
∨
ℋ
A
89
88
imp31
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
→
r
⊆
c
∩
B
→
p
⊆
c
∩
B
∨
ℋ
A
90
89
adantrr
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
→
r
⊆
c
∩
B
→
p
⊆
c
∩
B
∨
ℋ
A
91
90
anasss
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
→
r
⊆
c
∩
B
→
p
⊆
c
∩
B
∨
ℋ
A
92
91
adantrr
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
→
r
⊆
c
∩
B
→
p
⊆
c
∩
B
∨
ℋ
A
93
92
adantrl
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
∧
A
⊆
c
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
→
r
⊆
c
∩
B
→
p
⊆
c
∩
B
∨
ℋ
A
94
93
adantrr
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
∧
A
⊆
c
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
∧
p
⊆
c
→
r
⊆
c
∩
B
→
p
⊆
c
∩
B
∨
ℋ
A
95
60
94
mpd
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
∧
A
⊆
c
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
∧
p
⊆
c
→
p
⊆
c
∩
B
∨
ℋ
A
96
95
exp32
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
→
A
⊆
c
∧
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
∧
¬
q
=
p
→
p
⊆
c
→
p
⊆
c
∩
B
∨
ℋ
A
97
96
exp4d
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
∧
c
∈
C
ℋ
∧
p
∈
HAtoms
→
A
⊆
c
→
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
→
¬
q
=
p
→
p
⊆
c
→
p
⊆
c
∩
B
∨
ℋ
A
98
97
exp32
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
→
c
∈
C
ℋ
→
p
∈
HAtoms
→
A
⊆
c
→
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
→
¬
q
=
p
→
p
⊆
c
→
p
⊆
c
∩
B
∨
ℋ
A
99
98
com34
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
→
c
∈
C
ℋ
→
A
⊆
c
→
p
∈
HAtoms
→
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
→
¬
q
=
p
→
p
⊆
c
→
p
⊆
c
∩
B
∨
ℋ
A
100
99
imp4c
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
→
c
∈
C
ℋ
∧
A
⊆
c
∧
p
∈
HAtoms
→
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
→
¬
q
=
p
→
p
⊆
c
→
p
⊆
c
∩
B
∨
ℋ
A
101
100
com24
⊢
q
∈
HAtoms
∧
r
∈
HAtoms
→
¬
q
=
p
→
p
⊆
q
∨
ℋ
r
∧
q
⊆
A
∧
r
⊆
B
→
c
∈
C
ℋ
∧
A
⊆
c
∧
p
∈
HAtoms
→
p
⊆
c
→
p
⊆
c
∩
B
∨
ℋ
A