Step |
Hyp |
Ref |
Expression |
1 |
|
mdsymlem1.1 |
|- A e. CH |
2 |
|
mdsymlem1.2 |
|- B e. CH |
3 |
|
mdsymlem1.3 |
|- C = ( A vH p ) |
4 |
1 2
|
chjcomi |
|- ( A vH B ) = ( B vH A ) |
5 |
4
|
sseq2i |
|- ( p C_ ( A vH B ) <-> p C_ ( B vH A ) ) |
6 |
5
|
anbi2i |
|- ( ( p C_ c /\ p C_ ( A vH B ) ) <-> ( p C_ c /\ p C_ ( B vH A ) ) ) |
7 |
|
ssin |
|- ( ( p C_ c /\ p C_ ( B vH A ) ) <-> p C_ ( c i^i ( B vH A ) ) ) |
8 |
6 7
|
bitri |
|- ( ( p C_ c /\ p C_ ( A vH B ) ) <-> p C_ ( c i^i ( B vH A ) ) ) |
9 |
1 2 3
|
mdsymlem5 |
|- ( ( q e. HAtoms /\ r e. HAtoms ) -> ( -. q = p -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) ) |
10 |
|
sseq1 |
|- ( q = p -> ( q C_ A <-> p C_ A ) ) |
11 |
|
chincl |
|- ( ( c e. CH /\ B e. CH ) -> ( c i^i B ) e. CH ) |
12 |
2 11
|
mpan2 |
|- ( c e. CH -> ( c i^i B ) e. CH ) |
13 |
|
chub2 |
|- ( ( A e. CH /\ ( c i^i B ) e. CH ) -> A C_ ( ( c i^i B ) vH A ) ) |
14 |
1 12 13
|
sylancr |
|- ( c e. CH -> A C_ ( ( c i^i B ) vH A ) ) |
15 |
|
sstr2 |
|- ( p C_ A -> ( A C_ ( ( c i^i B ) vH A ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
16 |
14 15
|
syl5 |
|- ( p C_ A -> ( c e. CH -> p C_ ( ( c i^i B ) vH A ) ) ) |
17 |
10 16
|
syl6bi |
|- ( q = p -> ( q C_ A -> ( c e. CH -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
18 |
17
|
impd |
|- ( q = p -> ( ( q C_ A /\ c e. CH ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
19 |
18
|
a1i |
|- ( p C_ c -> ( q = p -> ( ( q C_ A /\ c e. CH ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
20 |
19
|
com13 |
|- ( ( q C_ A /\ c e. CH ) -> ( q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
21 |
20
|
adantrr |
|- ( ( q C_ A /\ ( c e. CH /\ A C_ c ) ) -> ( q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
22 |
21
|
ad2ant2r |
|- ( ( ( q C_ A /\ r C_ B ) /\ ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) ) -> ( q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
23 |
22
|
adantll |
|- ( ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) ) -> ( q = p -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
24 |
23
|
com12 |
|- ( q = p -> ( ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) /\ ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) ) -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
25 |
24
|
expd |
|- ( q = p -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) |
26 |
9 25
|
pm2.61d2 |
|- ( ( q e. HAtoms /\ r e. HAtoms ) -> ( ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) |
27 |
26
|
rexlimivv |
|- ( E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
28 |
27
|
com12 |
|- ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) -> ( E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
29 |
28
|
imim2d |
|- ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) -> ( ( p C_ ( A vH B ) -> E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) -> ( p C_ ( A vH B ) -> ( p C_ c -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) |
30 |
29
|
com34 |
|- ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) -> ( ( p C_ ( A vH B ) -> E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) -> ( p C_ c -> ( p C_ ( A vH B ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) ) |
31 |
30
|
imp4b |
|- ( ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) /\ ( p C_ ( A vH B ) -> E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) -> ( ( p C_ c /\ p C_ ( A vH B ) ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
32 |
8 31
|
syl5bir |
|- ( ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) /\ ( p C_ ( A vH B ) -> E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) ) -> ( p C_ ( c i^i ( B vH A ) ) -> p C_ ( ( c i^i B ) vH A ) ) ) |
33 |
32
|
ex |
|- ( ( ( c e. CH /\ A C_ c ) /\ p e. HAtoms ) -> ( ( p C_ ( A vH B ) -> E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) -> ( p C_ ( c i^i ( B vH A ) ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
34 |
33
|
ralimdva |
|- ( ( c e. CH /\ A C_ c ) -> ( A. p e. HAtoms ( p C_ ( A vH B ) -> E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) -> A. p e. HAtoms ( p C_ ( c i^i ( B vH A ) ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
35 |
2 1
|
chjcli |
|- ( B vH A ) e. CH |
36 |
|
chincl |
|- ( ( c e. CH /\ ( B vH A ) e. CH ) -> ( c i^i ( B vH A ) ) e. CH ) |
37 |
35 36
|
mpan2 |
|- ( c e. CH -> ( c i^i ( B vH A ) ) e. CH ) |
38 |
|
chjcl |
|- ( ( ( c i^i B ) e. CH /\ A e. CH ) -> ( ( c i^i B ) vH A ) e. CH ) |
39 |
12 1 38
|
sylancl |
|- ( c e. CH -> ( ( c i^i B ) vH A ) e. CH ) |
40 |
|
chrelat3 |
|- ( ( ( c i^i ( B vH A ) ) e. CH /\ ( ( c i^i B ) vH A ) e. CH ) -> ( ( c i^i ( B vH A ) ) C_ ( ( c i^i B ) vH A ) <-> A. p e. HAtoms ( p C_ ( c i^i ( B vH A ) ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
41 |
37 39 40
|
syl2anc |
|- ( c e. CH -> ( ( c i^i ( B vH A ) ) C_ ( ( c i^i B ) vH A ) <-> A. p e. HAtoms ( p C_ ( c i^i ( B vH A ) ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
42 |
41
|
adantr |
|- ( ( c e. CH /\ A C_ c ) -> ( ( c i^i ( B vH A ) ) C_ ( ( c i^i B ) vH A ) <-> A. p e. HAtoms ( p C_ ( c i^i ( B vH A ) ) -> p C_ ( ( c i^i B ) vH A ) ) ) ) |
43 |
34 42
|
sylibrd |
|- ( ( c e. CH /\ A C_ c ) -> ( A. p e. HAtoms ( p C_ ( A vH B ) -> E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) -> ( c i^i ( B vH A ) ) C_ ( ( c i^i B ) vH A ) ) ) |
44 |
43
|
ex |
|- ( c e. CH -> ( A C_ c -> ( A. p e. HAtoms ( p C_ ( A vH B ) -> E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) -> ( c i^i ( B vH A ) ) C_ ( ( c i^i B ) vH A ) ) ) ) |
45 |
44
|
com3r |
|- ( A. p e. HAtoms ( p C_ ( A vH B ) -> E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) -> ( c e. CH -> ( A C_ c -> ( c i^i ( B vH A ) ) C_ ( ( c i^i B ) vH A ) ) ) ) |
46 |
45
|
ralrimiv |
|- ( A. p e. HAtoms ( p C_ ( A vH B ) -> E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) -> A. c e. CH ( A C_ c -> ( c i^i ( B vH A ) ) C_ ( ( c i^i B ) vH A ) ) ) |
47 |
|
dmdbr2 |
|- ( ( B e. CH /\ A e. CH ) -> ( B MH* A <-> A. c e. CH ( A C_ c -> ( c i^i ( B vH A ) ) C_ ( ( c i^i B ) vH A ) ) ) ) |
48 |
2 1 47
|
mp2an |
|- ( B MH* A <-> A. c e. CH ( A C_ c -> ( c i^i ( B vH A ) ) C_ ( ( c i^i B ) vH A ) ) ) |
49 |
46 48
|
sylibr |
|- ( A. p e. HAtoms ( p C_ ( A vH B ) -> E. q e. HAtoms E. r e. HAtoms ( p C_ ( q vH r ) /\ ( q C_ A /\ r C_ B ) ) ) -> B MH* A ) |