| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metequiv.3 |
|- J = ( MetOpen ` C ) |
| 2 |
|
metequiv.4 |
|- K = ( MetOpen ` D ) |
| 3 |
|
simprrr |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) |
| 4 |
|
simplll |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> C e. ( *Met ` X ) ) |
| 5 |
|
simplr |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> x e. X ) |
| 6 |
|
simprlr |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> s e. RR+ ) |
| 7 |
6
|
rpxrd |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> s e. RR* ) |
| 8 |
|
simprll |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> r e. RR+ ) |
| 9 |
8
|
rpxrd |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> r e. RR* ) |
| 10 |
|
simprrl |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> s <_ r ) |
| 11 |
|
ssbl |
|- ( ( ( C e. ( *Met ` X ) /\ x e. X ) /\ ( s e. RR* /\ r e. RR* ) /\ s <_ r ) -> ( x ( ball ` C ) s ) C_ ( x ( ball ` C ) r ) ) |
| 12 |
4 5 7 9 10 11
|
syl221anc |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` C ) s ) C_ ( x ( ball ` C ) r ) ) |
| 13 |
3 12
|
eqsstrrd |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) |
| 14 |
|
simpllr |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> D e. ( *Met ` X ) ) |
| 15 |
|
ssbl |
|- ( ( ( D e. ( *Met ` X ) /\ x e. X ) /\ ( s e. RR* /\ r e. RR* ) /\ s <_ r ) -> ( x ( ball ` D ) s ) C_ ( x ( ball ` D ) r ) ) |
| 16 |
14 5 7 9 10 15
|
syl221anc |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` D ) s ) C_ ( x ( ball ` D ) r ) ) |
| 17 |
3 16
|
eqsstrd |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) |
| 18 |
13 17
|
jca |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) |
| 19 |
18
|
expr |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( r e. RR+ /\ s e. RR+ ) ) -> ( ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 20 |
19
|
anassrs |
|- ( ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ r e. RR+ ) /\ s e. RR+ ) -> ( ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 21 |
20
|
reximdva |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ r e. RR+ ) -> ( E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> E. s e. RR+ ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 22 |
|
r19.40 |
|- ( E. s e. RR+ ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) -> ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) |
| 23 |
21 22
|
syl6 |
|- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ r e. RR+ ) -> ( E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 24 |
23
|
ralimdva |
|- ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) -> ( A. r e. RR+ E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> A. r e. RR+ ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 25 |
|
r19.26 |
|- ( A. r e. RR+ ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) <-> ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. r e. RR+ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) |
| 26 |
24 25
|
imbitrdi |
|- ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) -> ( A. r e. RR+ E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. r e. RR+ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 27 |
26
|
ralimdva |
|- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( A. x e. X A. r e. RR+ E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> A. x e. X ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. r e. RR+ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 28 |
1 2
|
metequiv |
|- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( J = K <-> A. x e. X ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. r e. RR+ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 29 |
27 28
|
sylibrd |
|- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( A. x e. X A. r e. RR+ E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> J = K ) ) |