| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minveco.x |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | minveco.m |  |-  M = ( -v ` U ) | 
						
							| 3 |  | minveco.n |  |-  N = ( normCV ` U ) | 
						
							| 4 |  | minveco.y |  |-  Y = ( BaseSet ` W ) | 
						
							| 5 |  | minveco.u |  |-  ( ph -> U e. CPreHilOLD ) | 
						
							| 6 |  | minveco.w |  |-  ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) | 
						
							| 7 |  | minveco.a |  |-  ( ph -> A e. X ) | 
						
							| 8 |  | minveco.d |  |-  D = ( IndMet ` U ) | 
						
							| 9 |  | minveco.j |  |-  J = ( MetOpen ` D ) | 
						
							| 10 |  | minveco.r |  |-  R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) | 
						
							| 11 |  | minveco.s |  |-  S = inf ( R , RR , < ) | 
						
							| 12 |  | minveco.f |  |-  ( ph -> F : NN --> Y ) | 
						
							| 13 |  | minveco.1 |  |-  ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 | minvecolem1 |  |-  ( ph -> ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) ) | 
						
							| 15 | 14 | simp1d |  |-  ( ph -> R C_ RR ) | 
						
							| 16 | 14 | simp2d |  |-  ( ph -> R =/= (/) ) | 
						
							| 17 |  | 0re |  |-  0 e. RR | 
						
							| 18 | 14 | simp3d |  |-  ( ph -> A. w e. R 0 <_ w ) | 
						
							| 19 |  | breq1 |  |-  ( x = 0 -> ( x <_ w <-> 0 <_ w ) ) | 
						
							| 20 | 19 | ralbidv |  |-  ( x = 0 -> ( A. w e. R x <_ w <-> A. w e. R 0 <_ w ) ) | 
						
							| 21 | 20 | rspcev |  |-  ( ( 0 e. RR /\ A. w e. R 0 <_ w ) -> E. x e. RR A. w e. R x <_ w ) | 
						
							| 22 | 17 18 21 | sylancr |  |-  ( ph -> E. x e. RR A. w e. R x <_ w ) | 
						
							| 23 |  | infrecl |  |-  ( ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) -> inf ( R , RR , < ) e. RR ) | 
						
							| 24 | 15 16 22 23 | syl3anc |  |-  ( ph -> inf ( R , RR , < ) e. RR ) | 
						
							| 25 | 11 24 | eqeltrid |  |-  ( ph -> S e. RR ) |