Metamath Proof Explorer


Theorem minvecolem4c

Description: Lemma for minveco . The infimum of the distances to A is a real number. (Contributed by Mario Carneiro, 16-Jun-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x 𝑋 = ( BaseSet ‘ 𝑈 )
minveco.m 𝑀 = ( −𝑣𝑈 )
minveco.n 𝑁 = ( normCV𝑈 )
minveco.y 𝑌 = ( BaseSet ‘ 𝑊 )
minveco.u ( 𝜑𝑈 ∈ CPreHilOLD )
minveco.w ( 𝜑𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) )
minveco.a ( 𝜑𝐴𝑋 )
minveco.d 𝐷 = ( IndMet ‘ 𝑈 )
minveco.j 𝐽 = ( MetOpen ‘ 𝐷 )
minveco.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )
minveco.s 𝑆 = inf ( 𝑅 , ℝ , < )
minveco.f ( 𝜑𝐹 : ℕ ⟶ 𝑌 )
minveco.1 ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) )
Assertion minvecolem4c ( 𝜑𝑆 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 minveco.x 𝑋 = ( BaseSet ‘ 𝑈 )
2 minveco.m 𝑀 = ( −𝑣𝑈 )
3 minveco.n 𝑁 = ( normCV𝑈 )
4 minveco.y 𝑌 = ( BaseSet ‘ 𝑊 )
5 minveco.u ( 𝜑𝑈 ∈ CPreHilOLD )
6 minveco.w ( 𝜑𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) )
7 minveco.a ( 𝜑𝐴𝑋 )
8 minveco.d 𝐷 = ( IndMet ‘ 𝑈 )
9 minveco.j 𝐽 = ( MetOpen ‘ 𝐷 )
10 minveco.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )
11 minveco.s 𝑆 = inf ( 𝑅 , ℝ , < )
12 minveco.f ( 𝜑𝐹 : ℕ ⟶ 𝑌 )
13 minveco.1 ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) )
14 1 2 3 4 5 6 7 8 9 10 minvecolem1 ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤𝑅 0 ≤ 𝑤 ) )
15 14 simp1d ( 𝜑𝑅 ⊆ ℝ )
16 14 simp2d ( 𝜑𝑅 ≠ ∅ )
17 0re 0 ∈ ℝ
18 14 simp3d ( 𝜑 → ∀ 𝑤𝑅 0 ≤ 𝑤 )
19 breq1 ( 𝑥 = 0 → ( 𝑥𝑤 ↔ 0 ≤ 𝑤 ) )
20 19 ralbidv ( 𝑥 = 0 → ( ∀ 𝑤𝑅 𝑥𝑤 ↔ ∀ 𝑤𝑅 0 ≤ 𝑤 ) )
21 20 rspcev ( ( 0 ∈ ℝ ∧ ∀ 𝑤𝑅 0 ≤ 𝑤 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤𝑅 𝑥𝑤 )
22 17 18 21 sylancr ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑤𝑅 𝑥𝑤 )
23 infrecl ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤𝑅 𝑥𝑤 ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ )
24 15 16 22 23 syl3anc ( 𝜑 → inf ( 𝑅 , ℝ , < ) ∈ ℝ )
25 11 24 eqeltrid ( 𝜑𝑆 ∈ ℝ )