| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minveco.x | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | minveco.m | ⊢ 𝑀  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | minveco.n | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | minveco.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 5 |  | minveco.u | ⊢ ( 𝜑  →  𝑈  ∈  CPreHilOLD ) | 
						
							| 6 |  | minveco.w | ⊢ ( 𝜑  →  𝑊  ∈  ( ( SubSp ‘ 𝑈 )  ∩  CBan ) ) | 
						
							| 7 |  | minveco.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minveco.d | ⊢ 𝐷  =  ( IndMet ‘ 𝑈 ) | 
						
							| 9 |  | minveco.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 10 |  | minveco.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 11 |  | phnv | ⊢ ( 𝑈  ∈  CPreHilOLD  →  𝑈  ∈  NrmCVec ) | 
						
							| 12 | 5 11 | syl | ⊢ ( 𝜑  →  𝑈  ∈  NrmCVec ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑈  ∈  NrmCVec ) | 
						
							| 14 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝐴  ∈  𝑋 ) | 
						
							| 15 |  | elin | ⊢ ( 𝑊  ∈  ( ( SubSp ‘ 𝑈 )  ∩  CBan )  ↔  ( 𝑊  ∈  ( SubSp ‘ 𝑈 )  ∧  𝑊  ∈  CBan ) ) | 
						
							| 16 | 6 15 | sylib | ⊢ ( 𝜑  →  ( 𝑊  ∈  ( SubSp ‘ 𝑈 )  ∧  𝑊  ∈  CBan ) ) | 
						
							| 17 | 16 | simpld | ⊢ ( 𝜑  →  𝑊  ∈  ( SubSp ‘ 𝑈 ) ) | 
						
							| 18 |  | eqid | ⊢ ( SubSp ‘ 𝑈 )  =  ( SubSp ‘ 𝑈 ) | 
						
							| 19 | 1 4 18 | sspba | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  ( SubSp ‘ 𝑈 ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 20 | 12 17 19 | syl2anc | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 21 | 20 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑦  ∈  𝑋 ) | 
						
							| 22 | 1 2 | nvmcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐴 𝑀 𝑦 )  ∈  𝑋 ) | 
						
							| 23 | 13 14 21 22 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝑀 𝑦 )  ∈  𝑋 ) | 
						
							| 24 | 1 3 | nvcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴 𝑀 𝑦 )  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  ℝ ) | 
						
							| 25 | 13 23 24 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  ℝ ) | 
						
							| 26 | 25 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) : 𝑌 ⟶ ℝ ) | 
						
							| 27 | 26 | frnd | ⊢ ( 𝜑  →  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  ⊆  ℝ ) | 
						
							| 28 | 10 27 | eqsstrid | ⊢ ( 𝜑  →  𝑅  ⊆  ℝ ) | 
						
							| 29 | 16 | simprd | ⊢ ( 𝜑  →  𝑊  ∈  CBan ) | 
						
							| 30 |  | bnnv | ⊢ ( 𝑊  ∈  CBan  →  𝑊  ∈  NrmCVec ) | 
						
							| 31 |  | eqid | ⊢ ( 0vec ‘ 𝑊 )  =  ( 0vec ‘ 𝑊 ) | 
						
							| 32 | 4 31 | nvzcl | ⊢ ( 𝑊  ∈  NrmCVec  →  ( 0vec ‘ 𝑊 )  ∈  𝑌 ) | 
						
							| 33 | 29 30 32 | 3syl | ⊢ ( 𝜑  →  ( 0vec ‘ 𝑊 )  ∈  𝑌 ) | 
						
							| 34 |  | fvex | ⊢ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  V | 
						
							| 35 |  | eqid | ⊢ ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 36 | 34 35 | dmmpti | ⊢ dom  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  =  𝑌 | 
						
							| 37 | 33 36 | eleqtrrdi | ⊢ ( 𝜑  →  ( 0vec ‘ 𝑊 )  ∈  dom  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 38 | 37 | ne0d | ⊢ ( 𝜑  →  dom  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  ≠  ∅ ) | 
						
							| 39 |  | dm0rn0 | ⊢ ( dom  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  =  ∅  ↔  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  =  ∅ ) | 
						
							| 40 | 10 | eqeq1i | ⊢ ( 𝑅  =  ∅  ↔  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  =  ∅ ) | 
						
							| 41 | 39 40 | bitr4i | ⊢ ( dom  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  =  ∅  ↔  𝑅  =  ∅ ) | 
						
							| 42 | 41 | necon3bii | ⊢ ( dom  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  ≠  ∅  ↔  𝑅  ≠  ∅ ) | 
						
							| 43 | 38 42 | sylib | ⊢ ( 𝜑  →  𝑅  ≠  ∅ ) | 
						
							| 44 | 1 3 | nvge0 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴 𝑀 𝑦 )  ∈  𝑋 )  →  0  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 45 | 13 23 44 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  0  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 46 | 45 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑌 0  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 47 | 34 | rgenw | ⊢ ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  V | 
						
							| 48 |  | breq2 | ⊢ ( 𝑤  =  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  →  ( 0  ≤  𝑤  ↔  0  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 49 | 35 48 | ralrnmptw | ⊢ ( ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  V  →  ( ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0  ≤  𝑤  ↔  ∀ 𝑦  ∈  𝑌 0  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 50 | 47 49 | ax-mp | ⊢ ( ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0  ≤  𝑤  ↔  ∀ 𝑦  ∈  𝑌 0  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 51 | 46 50 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0  ≤  𝑤 ) | 
						
							| 52 | 10 | raleqi | ⊢ ( ∀ 𝑤  ∈  𝑅 0  ≤  𝑤  ↔  ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0  ≤  𝑤 ) | 
						
							| 53 | 51 52 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) | 
						
							| 54 | 28 43 53 | 3jca | ⊢ ( 𝜑  →  ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) |