| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minveco.x | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | minveco.m | ⊢ 𝑀  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | minveco.n | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | minveco.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 5 |  | minveco.u | ⊢ ( 𝜑  →  𝑈  ∈  CPreHilOLD ) | 
						
							| 6 |  | minveco.w | ⊢ ( 𝜑  →  𝑊  ∈  ( ( SubSp ‘ 𝑈 )  ∩  CBan ) ) | 
						
							| 7 |  | minveco.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minveco.d | ⊢ 𝐷  =  ( IndMet ‘ 𝑈 ) | 
						
							| 9 |  | minveco.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 10 |  | minveco.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 11 |  | minveco.s | ⊢ 𝑆  =  inf ( 𝑅 ,  ℝ ,   <  ) | 
						
							| 12 |  | minveco.f | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ 𝑌 ) | 
						
							| 13 |  | minveco.1 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 14 |  | minveco.t | ⊢ 𝑇  =  ( 1  /  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) ) | 
						
							| 15 |  | phnv | ⊢ ( 𝑈  ∈  CPreHilOLD  →  𝑈  ∈  NrmCVec ) | 
						
							| 16 | 1 8 | imsxmet | ⊢ ( 𝑈  ∈  NrmCVec  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 17 | 5 15 16 | 3syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 18 | 9 | methaus | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  Haus ) | 
						
							| 19 |  | lmfun | ⊢ ( 𝐽  ∈  Haus  →  Fun  ( ⇝𝑡 ‘ 𝐽 ) ) | 
						
							| 20 | 17 18 19 | 3syl | ⊢ ( 𝜑  →  Fun  ( ⇝𝑡 ‘ 𝐽 ) ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4a | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) | 
						
							| 22 |  | eqid | ⊢ ( 𝐽  ↾t  𝑌 )  =  ( 𝐽  ↾t  𝑌 ) | 
						
							| 23 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 24 | 4 | fvexi | ⊢ 𝑌  ∈  V | 
						
							| 25 | 24 | a1i | ⊢ ( 𝜑  →  𝑌  ∈  V ) | 
						
							| 26 | 5 15 | syl | ⊢ ( 𝜑  →  𝑈  ∈  NrmCVec ) | 
						
							| 27 | 9 | mopntop | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 28 | 26 16 27 | 3syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 29 |  | elin | ⊢ ( 𝑊  ∈  ( ( SubSp ‘ 𝑈 )  ∩  CBan )  ↔  ( 𝑊  ∈  ( SubSp ‘ 𝑈 )  ∧  𝑊  ∈  CBan ) ) | 
						
							| 30 | 6 29 | sylib | ⊢ ( 𝜑  →  ( 𝑊  ∈  ( SubSp ‘ 𝑈 )  ∧  𝑊  ∈  CBan ) ) | 
						
							| 31 | 30 | simpld | ⊢ ( 𝜑  →  𝑊  ∈  ( SubSp ‘ 𝑈 ) ) | 
						
							| 32 |  | eqid | ⊢ ( SubSp ‘ 𝑈 )  =  ( SubSp ‘ 𝑈 ) | 
						
							| 33 | 1 4 32 | sspba | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  ( SubSp ‘ 𝑈 ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 34 | 26 31 33 | syl2anc | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 35 |  | xmetres2 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑌  ⊆  𝑋 )  →  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( ∞Met ‘ 𝑌 ) ) | 
						
							| 36 | 17 34 35 | syl2anc | ⊢ ( 𝜑  →  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( ∞Met ‘ 𝑌 ) ) | 
						
							| 37 |  | eqid | ⊢ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  =  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) | 
						
							| 38 | 37 | mopntopon | ⊢ ( ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( ∞Met ‘ 𝑌 )  →  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 39 | 36 38 | syl | ⊢ ( 𝜑  →  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 40 |  | lmcl | ⊢ ( ( ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) )  →  ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 )  ∈  𝑌 ) | 
						
							| 41 | 39 21 40 | syl2anc | ⊢ ( 𝜑  →  ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 )  ∈  𝑌 ) | 
						
							| 42 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 43 | 22 23 25 28 41 42 12 | lmss | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 )  ↔  𝐹 ( ⇝𝑡 ‘ ( 𝐽  ↾t  𝑌 ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) ) | 
						
							| 44 |  | eqid | ⊢ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  =  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) | 
						
							| 45 | 44 9 37 | metrest | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑌  ⊆  𝑋 )  →  ( 𝐽  ↾t  𝑌 )  =  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) | 
						
							| 46 | 17 34 45 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽  ↾t  𝑌 )  =  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( 𝜑  →  ( ⇝𝑡 ‘ ( 𝐽  ↾t  𝑌 ) )  =  ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ) | 
						
							| 48 | 47 | breqd | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ ( 𝐽  ↾t  𝑌 ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 )  ↔  𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) ) | 
						
							| 49 | 43 48 | bitrd | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 )  ↔  𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) ) | 
						
							| 50 | 21 49 | mpbird | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) | 
						
							| 51 |  | funbrfv | ⊢ ( Fun  ( ⇝𝑡 ‘ 𝐽 )  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 )  →  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  =  ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) ) | 
						
							| 52 | 20 50 51 | sylc | ⊢ ( 𝜑  →  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  =  ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) | 
						
							| 53 | 52 41 | eqeltrd | ⊢ ( 𝜑  →  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  ∈  𝑌 ) | 
						
							| 54 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4b | ⊢ ( 𝜑  →  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  ∈  𝑋 ) | 
						
							| 55 | 1 2 3 8 | imsdval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  ∈  𝑋 )  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  =  ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) | 
						
							| 56 | 26 7 54 55 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  =  ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  =  ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) | 
						
							| 58 | 1 8 | imsmet | ⊢ ( 𝑈  ∈  NrmCVec  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 59 | 5 15 58 | 3syl | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 60 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  ∈  𝑋 )  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ∈  ℝ ) | 
						
							| 61 | 59 7 54 60 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ∈  ℝ ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ∈  ℝ ) | 
						
							| 63 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4c | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑆  ∈  ℝ ) | 
						
							| 65 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑈  ∈  NrmCVec ) | 
						
							| 66 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝐴  ∈  𝑋 ) | 
						
							| 67 | 34 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑦  ∈  𝑋 ) | 
						
							| 68 | 1 2 | nvmcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐴 𝑀 𝑦 )  ∈  𝑋 ) | 
						
							| 69 | 65 66 67 68 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝑀 𝑦 )  ∈  𝑋 ) | 
						
							| 70 | 1 3 | nvcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴 𝑀 𝑦 )  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  ℝ ) | 
						
							| 71 | 65 69 70 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  ℝ ) | 
						
							| 72 | 63 61 | ltnled | ⊢ ( 𝜑  →  ( 𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ↔  ¬  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  𝑆 ) ) | 
						
							| 73 |  | eqid | ⊢ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) )  =  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) | 
						
							| 74 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 75 | 61 63 | readdcld | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  ∈  ℝ ) | 
						
							| 76 | 75 | rehalfcld | ⊢ ( 𝜑  →  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 )  ∈  ℝ ) | 
						
							| 77 | 76 | resqcld | ⊢ ( 𝜑  →  ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 78 | 63 | resqcld | ⊢ ( 𝜑  →  ( 𝑆 ↑ 2 )  ∈  ℝ ) | 
						
							| 79 | 77 78 | resubcld | ⊢ ( 𝜑  →  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 81 | 63 61 63 | ltadd1d | ⊢ ( 𝜑  →  ( 𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ↔  ( 𝑆  +  𝑆 )  <  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 ) ) ) | 
						
							| 82 | 63 | recnd | ⊢ ( 𝜑  →  𝑆  ∈  ℂ ) | 
						
							| 83 | 82 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  𝑆 )  =  ( 𝑆  +  𝑆 ) ) | 
						
							| 84 | 83 | breq1d | ⊢ ( 𝜑  →  ( ( 2  ·  𝑆 )  <  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  ↔  ( 𝑆  +  𝑆 )  <  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 ) ) ) | 
						
							| 85 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 86 |  | 2pos | ⊢ 0  <  2 | 
						
							| 87 | 85 86 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 88 | 87 | a1i | ⊢ ( 𝜑  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 89 |  | ltmuldiv2 | ⊢ ( ( 𝑆  ∈  ℝ  ∧  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 2  ·  𝑆 )  <  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  ↔  𝑆  <  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ) ) | 
						
							| 90 | 63 75 88 89 | syl3anc | ⊢ ( 𝜑  →  ( ( 2  ·  𝑆 )  <  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  ↔  𝑆  <  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ) ) | 
						
							| 91 | 81 84 90 | 3bitr2d | ⊢ ( 𝜑  →  ( 𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ↔  𝑆  <  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ) ) | 
						
							| 92 | 1 2 3 4 5 6 7 8 9 10 | minvecolem1 | ⊢ ( 𝜑  →  ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 93 | 92 | simp3d | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) | 
						
							| 94 | 92 | simp1d | ⊢ ( 𝜑  →  𝑅  ⊆  ℝ ) | 
						
							| 95 | 92 | simp2d | ⊢ ( 𝜑  →  𝑅  ≠  ∅ ) | 
						
							| 96 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 97 |  | breq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ≤  𝑤  ↔  0  ≤  𝑤 ) ) | 
						
							| 98 | 97 | ralbidv | ⊢ ( 𝑥  =  0  →  ( ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 99 | 98 | rspcev | ⊢ ( ( 0  ∈  ℝ  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 ) | 
						
							| 100 | 96 93 99 | sylancr | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 ) | 
						
							| 101 | 96 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 102 |  | infregelb | ⊢ ( ( ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 )  ∧  0  ∈  ℝ )  →  ( 0  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 103 | 94 95 100 101 102 | syl31anc | ⊢ ( 𝜑  →  ( 0  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 104 | 93 103 | mpbird | ⊢ ( 𝜑  →  0  ≤  inf ( 𝑅 ,  ℝ ,   <  ) ) | 
						
							| 105 | 104 11 | breqtrrdi | ⊢ ( 𝜑  →  0  ≤  𝑆 ) | 
						
							| 106 |  | metge0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  ∈  𝑋 )  →  0  ≤  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) | 
						
							| 107 | 59 7 54 106 | syl3anc | ⊢ ( 𝜑  →  0  ≤  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) | 
						
							| 108 | 61 63 107 105 | addge0d | ⊢ ( 𝜑  →  0  ≤  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 ) ) | 
						
							| 109 |  | divge0 | ⊢ ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  ∈  ℝ  ∧  0  ≤  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 ) )  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  0  ≤  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ) | 
						
							| 110 | 75 108 88 109 | syl21anc | ⊢ ( 𝜑  →  0  ≤  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ) | 
						
							| 111 | 63 76 105 110 | lt2sqd | ⊢ ( 𝜑  →  ( 𝑆  <  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 )  ↔  ( 𝑆 ↑ 2 )  <  ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 ) ) ) | 
						
							| 112 | 78 77 | posdifd | ⊢ ( 𝜑  →  ( ( 𝑆 ↑ 2 )  <  ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  ↔  0  <  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) ) ) | 
						
							| 113 | 91 111 112 | 3bitrd | ⊢ ( 𝜑  →  ( 𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ↔  0  <  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) ) ) | 
						
							| 114 | 113 | biimpa | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  0  <  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) ) | 
						
							| 115 | 80 114 | elrpd | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ∈  ℝ+ ) | 
						
							| 116 | 115 | rpreccld | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  ( 1  /  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) )  ∈  ℝ+ ) | 
						
							| 117 | 14 116 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  𝑇  ∈  ℝ+ ) | 
						
							| 118 | 117 | rprege0d | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  ( 𝑇  ∈  ℝ  ∧  0  ≤  𝑇 ) ) | 
						
							| 119 |  | flge0nn0 | ⊢ ( ( 𝑇  ∈  ℝ  ∧  0  ≤  𝑇 )  →  ( ⌊ ‘ 𝑇 )  ∈  ℕ0 ) | 
						
							| 120 |  | nn0p1nn | ⊢ ( ( ⌊ ‘ 𝑇 )  ∈  ℕ0  →  ( ( ⌊ ‘ 𝑇 )  +  1 )  ∈  ℕ ) | 
						
							| 121 | 118 119 120 | 3syl | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  ( ( ⌊ ‘ 𝑇 )  +  1 )  ∈  ℕ ) | 
						
							| 122 | 121 | nnzd | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  ( ( ⌊ ‘ 𝑇 )  +  1 )  ∈  ℤ ) | 
						
							| 123 | 50 52 | breqtrrd | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) | 
						
							| 124 | 123 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) | 
						
							| 125 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 126 | 76 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 )  ∈  ℝ ) | 
						
							| 127 | 126 | rexrd | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 )  ∈  ℝ* ) | 
						
							| 128 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  𝜑 ) | 
						
							| 129 |  | eluznn | ⊢ ( ( ( ( ⌊ ‘ 𝑇 )  +  1 )  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 130 | 121 129 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 131 | 59 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 132 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  𝑋 ) | 
						
							| 133 | 12 34 | fssd | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ 𝑋 ) | 
						
							| 134 | 133 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  𝑋 ) | 
						
							| 135 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑛 )  ∈  𝑋 )  →  ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 136 | 131 132 134 135 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 137 | 128 130 136 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 138 | 137 | resqcld | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 139 | 63 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  𝑆  ∈  ℝ ) | 
						
							| 140 | 139 | resqcld | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( 𝑆 ↑ 2 )  ∈  ℝ ) | 
						
							| 141 | 130 | nnrecred | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 142 | 140 141 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 143 | 77 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 144 | 128 130 13 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 145 | 117 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  𝑇  ∈  ℝ+ ) | 
						
							| 146 | 145 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  𝑇  ∈  ℝ ) | 
						
							| 147 |  | reflcl | ⊢ ( 𝑇  ∈  ℝ  →  ( ⌊ ‘ 𝑇 )  ∈  ℝ ) | 
						
							| 148 |  | peano2re | ⊢ ( ( ⌊ ‘ 𝑇 )  ∈  ℝ  →  ( ( ⌊ ‘ 𝑇 )  +  1 )  ∈  ℝ ) | 
						
							| 149 | 146 147 148 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( ( ⌊ ‘ 𝑇 )  +  1 )  ∈  ℝ ) | 
						
							| 150 | 130 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 151 |  | fllep1 | ⊢ ( 𝑇  ∈  ℝ  →  𝑇  ≤  ( ( ⌊ ‘ 𝑇 )  +  1 ) ) | 
						
							| 152 | 146 151 | syl | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  𝑇  ≤  ( ( ⌊ ‘ 𝑇 )  +  1 ) ) | 
						
							| 153 |  | eluzle | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) )  →  ( ( ⌊ ‘ 𝑇 )  +  1 )  ≤  𝑛 ) | 
						
							| 154 | 153 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( ( ⌊ ‘ 𝑇 )  +  1 )  ≤  𝑛 ) | 
						
							| 155 | 146 149 150 152 154 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  𝑇  ≤  𝑛 ) | 
						
							| 156 | 14 155 | eqbrtrrid | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( 1  /  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) )  ≤  𝑛 ) | 
						
							| 157 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  1  ∈  ℝ ) | 
						
							| 158 | 79 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 159 | 114 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  0  <  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) ) | 
						
							| 160 | 130 | nngt0d | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  0  <  𝑛 ) | 
						
							| 161 |  | lediv23 | ⊢ ( ( 1  ∈  ℝ  ∧  ( ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ∈  ℝ  ∧  0  <  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) )  ∧  ( 𝑛  ∈  ℝ  ∧  0  <  𝑛 ) )  →  ( ( 1  /  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) )  ≤  𝑛  ↔  ( 1  /  𝑛 )  ≤  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) ) ) | 
						
							| 162 | 157 158 159 150 160 161 | syl122anc | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( ( 1  /  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) )  ≤  𝑛  ↔  ( 1  /  𝑛 )  ≤  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) ) ) | 
						
							| 163 | 156 162 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( 1  /  𝑛 )  ≤  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) ) | 
						
							| 164 | 140 141 143 | leaddsub2d | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) )  ≤  ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  ↔  ( 1  /  𝑛 )  ≤  ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) ) ) | 
						
							| 165 | 163 164 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) )  ≤  ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 ) ) | 
						
							| 166 | 138 142 143 144 165 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ≤  ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 ) ) | 
						
							| 167 | 76 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 )  ∈  ℝ ) | 
						
							| 168 |  | metge0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑛 )  ∈  𝑋 )  →  0  ≤  ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 169 | 131 132 134 168 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  ≤  ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 170 | 128 130 169 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  0  ≤  ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 171 | 110 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  0  ≤  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ) | 
						
							| 172 | 137 167 170 171 | le2sqd | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) )  ≤  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 )  ↔  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ≤  ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ↑ 2 ) ) ) | 
						
							| 173 | 166 172 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 )  +  1 ) ) )  →  ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) )  ≤  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ) | 
						
							| 174 | 73 9 74 122 124 125 127 173 | lmle | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ) | 
						
							| 175 | 61 63 61 | leadd2d | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  𝑆  ↔  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ≤  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 ) ) ) | 
						
							| 176 | 61 | recnd | ⊢ ( 𝜑  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ∈  ℂ ) | 
						
							| 177 | 176 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  =  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) | 
						
							| 178 | 177 | breq1d | ⊢ ( 𝜑  →  ( ( 2  ·  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ≤  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  ↔  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ≤  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 ) ) ) | 
						
							| 179 |  | lemuldiv2 | ⊢ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ∈  ℝ  ∧  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 2  ·  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ≤  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  ↔  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ) ) | 
						
							| 180 | 87 179 | mp3an3 | ⊢ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ∈  ℝ  ∧  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  ∈  ℝ )  →  ( ( 2  ·  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ≤  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  ↔  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ) ) | 
						
							| 181 | 61 75 180 | syl2anc | ⊢ ( 𝜑  →  ( ( 2  ·  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ≤  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  ↔  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ) ) | 
						
							| 182 | 175 178 181 | 3bitr2d | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  𝑆  ↔  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) ) ) | 
						
							| 183 | 182 | biimpar | ⊢ ( ( 𝜑  ∧  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  +  𝑆 )  /  2 ) )  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  𝑆 ) | 
						
							| 184 | 174 183 | syldan | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  𝑆 ) | 
						
							| 185 | 184 | ex | ⊢ ( 𝜑  →  ( 𝑆  <  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  𝑆 ) ) | 
						
							| 186 | 72 185 | sylbird | ⊢ ( 𝜑  →  ( ¬  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  𝑆  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  𝑆 ) ) | 
						
							| 187 | 186 | pm2.18d | ⊢ ( 𝜑  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  𝑆 ) | 
						
							| 188 | 187 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  𝑆 ) | 
						
							| 189 | 94 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑅  ⊆  ℝ ) | 
						
							| 190 | 100 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 ) | 
						
							| 191 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑦  ∈  𝑌 ) | 
						
							| 192 |  | fvex | ⊢ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  V | 
						
							| 193 |  | eqid | ⊢ ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 194 | 193 | elrnmpt1 | ⊢ ( ( 𝑦  ∈  𝑌  ∧  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  V )  →  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 195 | 191 192 194 | sylancl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 196 | 195 10 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  𝑅 ) | 
						
							| 197 |  | infrelb | ⊢ ( ( 𝑅  ⊆  ℝ  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤  ∧  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  𝑅 )  →  inf ( 𝑅 ,  ℝ ,   <  )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 198 | 189 190 196 197 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  inf ( 𝑅 ,  ℝ ,   <  )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 199 | 11 198 | eqbrtrid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑆  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 200 | 62 64 71 188 199 | letrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 201 | 57 200 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 202 | 201 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 203 |  | oveq2 | ⊢ ( 𝑥  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  →  ( 𝐴 𝑀 𝑥 )  =  ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) | 
						
							| 204 | 203 | fveq2d | ⊢ ( 𝑥  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  →  ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  =  ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) | 
						
							| 205 | 204 | breq1d | ⊢ ( 𝑥  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  →  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ↔  ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 206 | 205 | ralbidv | ⊢ ( 𝑥  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  →  ( ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 207 | 206 | rspcev | ⊢ ( ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  ∈  𝑌  ∧  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  →  ∃ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 208 | 53 202 207 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |