| Step |
Hyp |
Ref |
Expression |
| 1 |
|
minveco.x |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
minveco.m |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
| 3 |
|
minveco.n |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
| 4 |
|
minveco.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
| 5 |
|
minveco.u |
⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) |
| 6 |
|
minveco.w |
⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) |
| 7 |
|
minveco.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 8 |
|
minveco.d |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
| 9 |
|
minveco.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 10 |
|
minveco.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 11 |
|
minveco.s |
⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) |
| 12 |
|
minveco.f |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑌 ) |
| 13 |
|
minveco.1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 14 |
|
phnv |
⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) |
| 15 |
5 14
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
| 16 |
|
elin |
⊢ ( 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ↔ ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) |
| 17 |
6 16
|
sylib |
⊢ ( 𝜑 → ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) |
| 18 |
17
|
simpld |
⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
| 19 |
|
eqid |
⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) |
| 20 |
1 4 19
|
sspba |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌 ⊆ 𝑋 ) |
| 21 |
15 18 20
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 22 |
1 8
|
imsxmet |
⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 23 |
15 22
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 24 |
9
|
methaus |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus ) |
| 25 |
23 24
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Haus ) |
| 26 |
|
lmfun |
⊢ ( 𝐽 ∈ Haus → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |
| 28 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
minvecolem4a |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |
| 29 |
|
eqid |
⊢ ( 𝐽 ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) |
| 30 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 31 |
4
|
fvexi |
⊢ 𝑌 ∈ V |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 33 |
9
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 34 |
23 33
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 35 |
|
xmetres2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
| 36 |
23 21 35
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
| 37 |
|
eqid |
⊢ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) |
| 38 |
37
|
mopntopon |
⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 39 |
36 38
|
syl |
⊢ ( 𝜑 → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 40 |
|
lmcl |
⊢ ( ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) → ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ∈ 𝑌 ) |
| 41 |
39 28 40
|
syl2anc |
⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ∈ 𝑌 ) |
| 42 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 43 |
29 30 32 34 41 42 12
|
lmss |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( 𝐽 ↾t 𝑌 ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
| 44 |
|
eqid |
⊢ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) |
| 45 |
44 9 37
|
metrest |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
| 46 |
23 21 45
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
| 47 |
46
|
fveq2d |
⊢ ( 𝜑 → ( ⇝𝑡 ‘ ( 𝐽 ↾t 𝑌 ) ) = ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
| 48 |
47
|
breqd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( 𝐽 ↾t 𝑌 ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
| 49 |
43 48
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
| 50 |
28 49
|
mpbird |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |
| 51 |
|
funbrfv |
⊢ ( Fun ( ⇝𝑡 ‘ 𝐽 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
| 52 |
27 50 51
|
sylc |
⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |
| 53 |
52 41
|
eqeltrd |
⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑌 ) |
| 54 |
21 53
|
sseldd |
⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑋 ) |