| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minveco.x | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | minveco.m | ⊢ 𝑀  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | minveco.n | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | minveco.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 5 |  | minveco.u | ⊢ ( 𝜑  →  𝑈  ∈  CPreHilOLD ) | 
						
							| 6 |  | minveco.w | ⊢ ( 𝜑  →  𝑊  ∈  ( ( SubSp ‘ 𝑈 )  ∩  CBan ) ) | 
						
							| 7 |  | minveco.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minveco.d | ⊢ 𝐷  =  ( IndMet ‘ 𝑈 ) | 
						
							| 9 |  | minveco.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 10 |  | minveco.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 11 |  | minveco.s | ⊢ 𝑆  =  inf ( 𝑅 ,  ℝ ,   <  ) | 
						
							| 12 |  | minveco.f | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ 𝑌 ) | 
						
							| 13 |  | minveco.1 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 14 |  | phnv | ⊢ ( 𝑈  ∈  CPreHilOLD  →  𝑈  ∈  NrmCVec ) | 
						
							| 15 | 5 14 | syl | ⊢ ( 𝜑  →  𝑈  ∈  NrmCVec ) | 
						
							| 16 |  | elin | ⊢ ( 𝑊  ∈  ( ( SubSp ‘ 𝑈 )  ∩  CBan )  ↔  ( 𝑊  ∈  ( SubSp ‘ 𝑈 )  ∧  𝑊  ∈  CBan ) ) | 
						
							| 17 | 6 16 | sylib | ⊢ ( 𝜑  →  ( 𝑊  ∈  ( SubSp ‘ 𝑈 )  ∧  𝑊  ∈  CBan ) ) | 
						
							| 18 | 17 | simpld | ⊢ ( 𝜑  →  𝑊  ∈  ( SubSp ‘ 𝑈 ) ) | 
						
							| 19 |  | eqid | ⊢ ( SubSp ‘ 𝑈 )  =  ( SubSp ‘ 𝑈 ) | 
						
							| 20 | 1 4 19 | sspba | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  ( SubSp ‘ 𝑈 ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 21 | 15 18 20 | syl2anc | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 22 | 1 8 | imsxmet | ⊢ ( 𝑈  ∈  NrmCVec  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 23 | 15 22 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 24 | 9 | methaus | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  Haus ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Haus ) | 
						
							| 26 |  | lmfun | ⊢ ( 𝐽  ∈  Haus  →  Fun  ( ⇝𝑡 ‘ 𝐽 ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝜑  →  Fun  ( ⇝𝑡 ‘ 𝐽 ) ) | 
						
							| 28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4a | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) | 
						
							| 29 |  | eqid | ⊢ ( 𝐽  ↾t  𝑌 )  =  ( 𝐽  ↾t  𝑌 ) | 
						
							| 30 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 31 | 4 | fvexi | ⊢ 𝑌  ∈  V | 
						
							| 32 | 31 | a1i | ⊢ ( 𝜑  →  𝑌  ∈  V ) | 
						
							| 33 | 9 | mopntop | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 34 | 23 33 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 35 |  | xmetres2 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑌  ⊆  𝑋 )  →  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( ∞Met ‘ 𝑌 ) ) | 
						
							| 36 | 23 21 35 | syl2anc | ⊢ ( 𝜑  →  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( ∞Met ‘ 𝑌 ) ) | 
						
							| 37 |  | eqid | ⊢ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  =  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) | 
						
							| 38 | 37 | mopntopon | ⊢ ( ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( ∞Met ‘ 𝑌 )  →  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 39 | 36 38 | syl | ⊢ ( 𝜑  →  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 40 |  | lmcl | ⊢ ( ( ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) )  →  ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 )  ∈  𝑌 ) | 
						
							| 41 | 39 28 40 | syl2anc | ⊢ ( 𝜑  →  ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 )  ∈  𝑌 ) | 
						
							| 42 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 43 | 29 30 32 34 41 42 12 | lmss | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 )  ↔  𝐹 ( ⇝𝑡 ‘ ( 𝐽  ↾t  𝑌 ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) ) | 
						
							| 44 |  | eqid | ⊢ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  =  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) | 
						
							| 45 | 44 9 37 | metrest | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑌  ⊆  𝑋 )  →  ( 𝐽  ↾t  𝑌 )  =  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) | 
						
							| 46 | 23 21 45 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽  ↾t  𝑌 )  =  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( 𝜑  →  ( ⇝𝑡 ‘ ( 𝐽  ↾t  𝑌 ) )  =  ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ) | 
						
							| 48 | 47 | breqd | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ ( 𝐽  ↾t  𝑌 ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 )  ↔  𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) ) | 
						
							| 49 | 43 48 | bitrd | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 )  ↔  𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) ) | 
						
							| 50 | 28 49 | mpbird | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) | 
						
							| 51 |  | funbrfv | ⊢ ( Fun  ( ⇝𝑡 ‘ 𝐽 )  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 )  →  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  =  ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) ) | 
						
							| 52 | 27 50 51 | sylc | ⊢ ( 𝜑  →  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  =  ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) | 
						
							| 53 | 52 41 | eqeltrd | ⊢ ( 𝜑  →  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  ∈  𝑌 ) | 
						
							| 54 | 21 53 | sseldd | ⊢ ( 𝜑  →  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 )  ∈  𝑋 ) |