Step |
Hyp |
Ref |
Expression |
1 |
|
minveco.x |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
minveco.m |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
3 |
|
minveco.n |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
4 |
|
minveco.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
5 |
|
minveco.u |
⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) |
6 |
|
minveco.w |
⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) |
7 |
|
minveco.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
minveco.d |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
9 |
|
minveco.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
10 |
|
minveco.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
11 |
|
minveco.s |
⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) |
12 |
|
minveco.f |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑌 ) |
13 |
|
minveco.1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
14 |
|
phnv |
⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) |
15 |
5 14
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
16 |
|
elin |
⊢ ( 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ↔ ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) |
17 |
6 16
|
sylib |
⊢ ( 𝜑 → ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) |
18 |
17
|
simpld |
⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
19 |
|
eqid |
⊢ ( IndMet ‘ 𝑊 ) = ( IndMet ‘ 𝑊 ) |
20 |
|
eqid |
⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) |
21 |
4 8 19 20
|
sspims |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → ( IndMet ‘ 𝑊 ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) |
22 |
15 18 21
|
syl2anc |
⊢ ( 𝜑 → ( IndMet ‘ 𝑊 ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) |
23 |
17
|
simprd |
⊢ ( 𝜑 → 𝑊 ∈ CBan ) |
24 |
|
eqid |
⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) |
25 |
24 19
|
cbncms |
⊢ ( 𝑊 ∈ CBan → ( IndMet ‘ 𝑊 ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑊 ) ) ) |
26 |
23 25
|
syl |
⊢ ( 𝜑 → ( IndMet ‘ 𝑊 ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑊 ) ) ) |
27 |
22 26
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑊 ) ) ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
minvecolem3 |
⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) |
29 |
1 8
|
imsmet |
⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
30 |
5 14 29
|
3syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
31 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
32 |
30 31
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
33 |
|
causs |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
34 |
32 12 33
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
35 |
28 34
|
mpbid |
⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
36 |
|
eqid |
⊢ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) |
37 |
36
|
cmetcau |
⊢ ( ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑊 ) ) ∧ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
38 |
27 35 37
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
39 |
|
xmetres |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
40 |
36
|
methaus |
⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ Haus ) |
41 |
32 39 40
|
3syl |
⊢ ( 𝜑 → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ Haus ) |
42 |
|
lmfun |
⊢ ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ Haus → Fun ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
43 |
|
funfvbrb |
⊢ ( Fun ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( 𝐹 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ↔ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
44 |
41 42 43
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ↔ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
45 |
38 44
|
mpbid |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |