| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minveco.x | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | minveco.m | ⊢ 𝑀  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | minveco.n | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | minveco.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 5 |  | minveco.u | ⊢ ( 𝜑  →  𝑈  ∈  CPreHilOLD ) | 
						
							| 6 |  | minveco.w | ⊢ ( 𝜑  →  𝑊  ∈  ( ( SubSp ‘ 𝑈 )  ∩  CBan ) ) | 
						
							| 7 |  | minveco.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minveco.d | ⊢ 𝐷  =  ( IndMet ‘ 𝑈 ) | 
						
							| 9 |  | minveco.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 10 |  | minveco.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 11 |  | minveco.s | ⊢ 𝑆  =  inf ( 𝑅 ,  ℝ ,   <  ) | 
						
							| 12 |  | minveco.f | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ 𝑌 ) | 
						
							| 13 |  | minveco.1 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 14 |  | phnv | ⊢ ( 𝑈  ∈  CPreHilOLD  →  𝑈  ∈  NrmCVec ) | 
						
							| 15 | 5 14 | syl | ⊢ ( 𝜑  →  𝑈  ∈  NrmCVec ) | 
						
							| 16 |  | elin | ⊢ ( 𝑊  ∈  ( ( SubSp ‘ 𝑈 )  ∩  CBan )  ↔  ( 𝑊  ∈  ( SubSp ‘ 𝑈 )  ∧  𝑊  ∈  CBan ) ) | 
						
							| 17 | 6 16 | sylib | ⊢ ( 𝜑  →  ( 𝑊  ∈  ( SubSp ‘ 𝑈 )  ∧  𝑊  ∈  CBan ) ) | 
						
							| 18 | 17 | simpld | ⊢ ( 𝜑  →  𝑊  ∈  ( SubSp ‘ 𝑈 ) ) | 
						
							| 19 |  | eqid | ⊢ ( IndMet ‘ 𝑊 )  =  ( IndMet ‘ 𝑊 ) | 
						
							| 20 |  | eqid | ⊢ ( SubSp ‘ 𝑈 )  =  ( SubSp ‘ 𝑈 ) | 
						
							| 21 | 4 8 19 20 | sspims | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  ( SubSp ‘ 𝑈 ) )  →  ( IndMet ‘ 𝑊 )  =  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) | 
						
							| 22 | 15 18 21 | syl2anc | ⊢ ( 𝜑  →  ( IndMet ‘ 𝑊 )  =  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) | 
						
							| 23 | 17 | simprd | ⊢ ( 𝜑  →  𝑊  ∈  CBan ) | 
						
							| 24 |  | eqid | ⊢ ( BaseSet ‘ 𝑊 )  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 25 | 24 19 | cbncms | ⊢ ( 𝑊  ∈  CBan  →  ( IndMet ‘ 𝑊 )  ∈  ( CMet ‘ ( BaseSet ‘ 𝑊 ) ) ) | 
						
							| 26 | 23 25 | syl | ⊢ ( 𝜑  →  ( IndMet ‘ 𝑊 )  ∈  ( CMet ‘ ( BaseSet ‘ 𝑊 ) ) ) | 
						
							| 27 | 22 26 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( CMet ‘ ( BaseSet ‘ 𝑊 ) ) ) | 
						
							| 28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem3 | ⊢ ( 𝜑  →  𝐹  ∈  ( Cau ‘ 𝐷 ) ) | 
						
							| 29 | 1 8 | imsmet | ⊢ ( 𝑈  ∈  NrmCVec  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 30 | 5 14 29 | 3syl | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 31 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 33 |  | causs | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹 : ℕ ⟶ 𝑌 )  →  ( 𝐹  ∈  ( Cau ‘ 𝐷 )  ↔  𝐹  ∈  ( Cau ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ) | 
						
							| 34 | 32 12 33 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( Cau ‘ 𝐷 )  ↔  𝐹  ∈  ( Cau ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ) | 
						
							| 35 | 28 34 | mpbid | ⊢ ( 𝜑  →  𝐹  ∈  ( Cau ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) | 
						
							| 36 |  | eqid | ⊢ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  =  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) | 
						
							| 37 | 36 | cmetcau | ⊢ ( ( ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( CMet ‘ ( BaseSet ‘ 𝑊 ) )  ∧  𝐹  ∈  ( Cau ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) )  →  𝐹  ∈  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ) | 
						
							| 38 | 27 35 37 | syl2anc | ⊢ ( 𝜑  →  𝐹  ∈  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ) | 
						
							| 39 |  | xmetres | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( ∞Met ‘ ( 𝑋  ∩  𝑌 ) ) ) | 
						
							| 40 | 36 | methaus | ⊢ ( ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( ∞Met ‘ ( 𝑋  ∩  𝑌 ) )  →  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  ∈  Haus ) | 
						
							| 41 | 32 39 40 | 3syl | ⊢ ( 𝜑  →  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  ∈  Haus ) | 
						
							| 42 |  | lmfun | ⊢ ( ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  ∈  Haus  →  Fun  ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ) | 
						
							| 43 |  | funfvbrb | ⊢ ( Fun  ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) )  →  ( 𝐹  ∈  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) )  ↔  𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) ) | 
						
							| 44 | 41 42 43 | 3syl | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) )  ↔  𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) ) | 
						
							| 45 | 38 44 | mpbid | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) ‘ 𝐹 ) ) |