| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minveco.x | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | minveco.m | ⊢ 𝑀  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | minveco.n | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | minveco.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 5 |  | minveco.u | ⊢ ( 𝜑  →  𝑈  ∈  CPreHilOLD ) | 
						
							| 6 |  | minveco.w | ⊢ ( 𝜑  →  𝑊  ∈  ( ( SubSp ‘ 𝑈 )  ∩  CBan ) ) | 
						
							| 7 |  | minveco.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minveco.d | ⊢ 𝐷  =  ( IndMet ‘ 𝑈 ) | 
						
							| 9 |  | minveco.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 10 |  | minveco.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 11 |  | minveco.s | ⊢ 𝑆  =  inf ( 𝑅 ,  ℝ ,   <  ) | 
						
							| 12 |  | minveco.f | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ 𝑌 ) | 
						
							| 13 |  | minveco.1 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 14 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 15 |  | 4pos | ⊢ 0  <  4 | 
						
							| 16 | 14 15 | elrpii | ⊢ 4  ∈  ℝ+ | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 18 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 19 |  | rpexpcl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  2  ∈  ℤ )  →  ( 𝑥 ↑ 2 )  ∈  ℝ+ ) | 
						
							| 20 | 17 18 19 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥 ↑ 2 )  ∈  ℝ+ ) | 
						
							| 21 |  | rpdivcl | ⊢ ( ( 4  ∈  ℝ+  ∧  ( 𝑥 ↑ 2 )  ∈  ℝ+ )  →  ( 4  /  ( 𝑥 ↑ 2 ) )  ∈  ℝ+ ) | 
						
							| 22 | 16 20 21 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 4  /  ( 𝑥 ↑ 2 ) )  ∈  ℝ+ ) | 
						
							| 23 |  | rprege0 | ⊢ ( ( 4  /  ( 𝑥 ↑ 2 ) )  ∈  ℝ+  →  ( ( 4  /  ( 𝑥 ↑ 2 ) )  ∈  ℝ  ∧  0  ≤  ( 4  /  ( 𝑥 ↑ 2 ) ) ) ) | 
						
							| 24 |  | flge0nn0 | ⊢ ( ( ( 4  /  ( 𝑥 ↑ 2 ) )  ∈  ℝ  ∧  0  ≤  ( 4  /  ( 𝑥 ↑ 2 ) ) )  →  ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  ∈  ℕ0 ) | 
						
							| 25 |  | nn0p1nn | ⊢ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  ∈  ℕ0  →  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  ∈  ℕ ) | 
						
							| 26 | 22 23 24 25 | 4syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  ∈  ℕ ) | 
						
							| 27 |  | phnv | ⊢ ( 𝑈  ∈  CPreHilOLD  →  𝑈  ∈  NrmCVec ) | 
						
							| 28 | 1 8 | imsmet | ⊢ ( 𝑈  ∈  NrmCVec  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 29 | 5 27 28 | 3syl | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 31 | 5 27 | syl | ⊢ ( 𝜑  →  𝑈  ∈  NrmCVec ) | 
						
							| 32 |  | inss1 | ⊢ ( ( SubSp ‘ 𝑈 )  ∩  CBan )  ⊆  ( SubSp ‘ 𝑈 ) | 
						
							| 33 | 32 6 | sselid | ⊢ ( 𝜑  →  𝑊  ∈  ( SubSp ‘ 𝑈 ) ) | 
						
							| 34 |  | eqid | ⊢ ( SubSp ‘ 𝑈 )  =  ( SubSp ‘ 𝑈 ) | 
						
							| 35 | 1 4 34 | sspba | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  ( SubSp ‘ 𝑈 ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 36 | 31 33 35 | syl2anc | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 38 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  𝐹 : ℕ ⟶ 𝑌 ) | 
						
							| 39 | 26 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  ∈  ℕ ) | 
						
							| 40 | 38 39 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  ∈  𝑌 ) | 
						
							| 41 | 37 40 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  ∈  𝑋 ) | 
						
							| 42 |  | eluznn | ⊢ ( ( ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 43 | 26 42 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 44 | 38 43 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  𝑌 ) | 
						
							| 45 | 37 44 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  𝑋 ) | 
						
							| 46 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑛 )  ∈  𝑋 )  →  ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 47 | 30 41 45 46 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 48 | 47 | resqcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 49 | 39 | nnrpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  ∈  ℝ+ ) | 
						
							| 50 | 49 | rpreccld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 51 |  | rpmulcl | ⊢ ( ( 4  ∈  ℝ+  ∧  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  ∈  ℝ+ )  →  ( 4  ·  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  ∈  ℝ+ ) | 
						
							| 52 | 16 50 51 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 4  ·  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  ∈  ℝ+ ) | 
						
							| 53 | 52 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 4  ·  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  ∈  ℝ ) | 
						
							| 54 | 20 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 𝑥 ↑ 2 )  ∈  ℝ+ ) | 
						
							| 55 | 54 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 𝑥 ↑ 2 )  ∈  ℝ ) | 
						
							| 56 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  𝑈  ∈  CPreHilOLD ) | 
						
							| 57 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  𝑊  ∈  ( ( SubSp ‘ 𝑈 )  ∩  CBan ) ) | 
						
							| 58 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 59 | 26 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  ∈  ℝ+ ) | 
						
							| 60 | 59 | rpreccld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 62 | 61 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  ∈  ℝ ) | 
						
							| 63 | 61 | rpge0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  0  ≤  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) | 
						
							| 64 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝐹 : ℕ ⟶ 𝑌 ) | 
						
							| 65 | 64 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  𝑌 ) | 
						
							| 66 | 43 65 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  𝑌 ) | 
						
							| 67 |  | fveq2 | ⊢ ( 𝑛  =  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) | 
						
							| 68 | 67 | oveq2d | ⊢ ( 𝑛  =  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  →  ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) )  =  ( 𝐴 𝐷 ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) ) | 
						
							| 69 | 68 | oveq1d | ⊢ ( 𝑛  =  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  =  ( ( 𝐴 𝐷 ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) ↑ 2 ) ) | 
						
							| 70 |  | oveq2 | ⊢ ( 𝑛  =  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  →  ( 1  /  𝑛 )  =  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( 𝑛  =  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  →  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) )  =  ( ( 𝑆 ↑ 2 )  +  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) ) | 
						
							| 72 | 69 71 | breq12d | ⊢ ( 𝑛  =  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  →  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) )  ↔  ( ( 𝐴 𝐷 ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) ) ) | 
						
							| 73 | 13 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 74 | 73 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ∀ 𝑛  ∈  ℕ ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 75 | 72 74 39 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) ) | 
						
							| 76 | 37 66 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  𝑋 ) | 
						
							| 77 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑛 )  ∈  𝑋 )  →  ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 78 | 30 58 76 77 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 79 | 78 | resqcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 80 | 1 2 3 4 5 6 7 8 9 10 | minvecolem1 | ⊢ ( 𝜑  →  ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 81 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 82 |  | breq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ≤  𝑤  ↔  0  ≤  𝑤 ) ) | 
						
							| 83 | 82 | ralbidv | ⊢ ( 𝑥  =  0  →  ( ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 84 | 83 | rspcev | ⊢ ( ( 0  ∈  ℝ  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 ) | 
						
							| 85 | 81 84 | mpan | ⊢ ( ∀ 𝑤  ∈  𝑅 0  ≤  𝑤  →  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 ) | 
						
							| 86 | 85 | 3anim3i | ⊢ ( ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 )  →  ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 ) ) | 
						
							| 87 |  | infrecl | ⊢ ( ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 )  →  inf ( 𝑅 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 88 | 80 86 87 | 3syl | ⊢ ( 𝜑  →  inf ( 𝑅 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 89 | 11 88 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 90 | 89 | resqcld | ⊢ ( 𝜑  →  ( 𝑆 ↑ 2 )  ∈  ℝ ) | 
						
							| 91 | 90 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 𝑆 ↑ 2 )  ∈  ℝ ) | 
						
							| 92 | 43 | nnrecred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 93 | 91 92 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 94 | 91 62 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( 𝑆 ↑ 2 )  +  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  ∈  ℝ ) | 
						
							| 95 | 13 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 96 | 43 95 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 97 |  | eluzle | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  →  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  ≤  𝑛 ) | 
						
							| 98 | 97 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  ≤  𝑛 ) | 
						
							| 99 | 49 | rpregt0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  ∈  ℝ  ∧  0  <  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) | 
						
							| 100 |  | nnre | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ ) | 
						
							| 101 |  | nngt0 | ⊢ ( 𝑛  ∈  ℕ  →  0  <  𝑛 ) | 
						
							| 102 | 100 101 | jca | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  ∈  ℝ  ∧  0  <  𝑛 ) ) | 
						
							| 103 | 43 102 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 𝑛  ∈  ℝ  ∧  0  <  𝑛 ) ) | 
						
							| 104 |  | lerec | ⊢ ( ( ( ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  ∈  ℝ  ∧  0  <  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  ∧  ( 𝑛  ∈  ℝ  ∧  0  <  𝑛 ) )  →  ( ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  ≤  𝑛  ↔  ( 1  /  𝑛 )  ≤  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) ) | 
						
							| 105 | 99 103 104 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  ≤  𝑛  ↔  ( 1  /  𝑛 )  ≤  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) ) | 
						
							| 106 | 98 105 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 1  /  𝑛 )  ≤  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) | 
						
							| 107 | 92 62 91 106 | leadd2dd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( 𝑆 ↑ 2 )  +  ( 1  /  𝑛 ) )  ≤  ( ( 𝑆 ↑ 2 )  +  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) ) | 
						
							| 108 | 79 93 94 96 107 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) ) | 
						
							| 109 | 1 2 3 4 56 57 58 8 9 10 11 62 63 40 66 75 108 | minvecolem2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  ≤  ( 4  ·  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) ) | 
						
							| 110 |  | rpdivcl | ⊢ ( ( ( 𝑥 ↑ 2 )  ∈  ℝ+  ∧  4  ∈  ℝ+ )  →  ( ( 𝑥 ↑ 2 )  /  4 )  ∈  ℝ+ ) | 
						
							| 111 | 54 16 110 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( 𝑥 ↑ 2 )  /  4 )  ∈  ℝ+ ) | 
						
							| 112 |  | rpcnne0 | ⊢ ( ( 𝑥 ↑ 2 )  ∈  ℝ+  →  ( ( 𝑥 ↑ 2 )  ∈  ℂ  ∧  ( 𝑥 ↑ 2 )  ≠  0 ) ) | 
						
							| 113 | 54 112 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( 𝑥 ↑ 2 )  ∈  ℂ  ∧  ( 𝑥 ↑ 2 )  ≠  0 ) ) | 
						
							| 114 |  | rpcnne0 | ⊢ ( 4  ∈  ℝ+  →  ( 4  ∈  ℂ  ∧  4  ≠  0 ) ) | 
						
							| 115 | 16 114 | ax-mp | ⊢ ( 4  ∈  ℂ  ∧  4  ≠  0 ) | 
						
							| 116 |  | recdiv | ⊢ ( ( ( ( 𝑥 ↑ 2 )  ∈  ℂ  ∧  ( 𝑥 ↑ 2 )  ≠  0 )  ∧  ( 4  ∈  ℂ  ∧  4  ≠  0 ) )  →  ( 1  /  ( ( 𝑥 ↑ 2 )  /  4 ) )  =  ( 4  /  ( 𝑥 ↑ 2 ) ) ) | 
						
							| 117 | 113 115 116 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 1  /  ( ( 𝑥 ↑ 2 )  /  4 ) )  =  ( 4  /  ( 𝑥 ↑ 2 ) ) ) | 
						
							| 118 | 22 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 4  /  ( 𝑥 ↑ 2 ) )  ∈  ℝ+ ) | 
						
							| 119 | 118 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 4  /  ( 𝑥 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 120 |  | flltp1 | ⊢ ( ( 4  /  ( 𝑥 ↑ 2 ) )  ∈  ℝ  →  ( 4  /  ( 𝑥 ↑ 2 ) )  <  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) | 
						
							| 121 | 119 120 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 4  /  ( 𝑥 ↑ 2 ) )  <  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) | 
						
							| 122 | 117 121 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 1  /  ( ( 𝑥 ↑ 2 )  /  4 ) )  <  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) | 
						
							| 123 | 111 49 122 | ltrec1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  <  ( ( 𝑥 ↑ 2 )  /  4 ) ) | 
						
							| 124 | 14 15 | pm3.2i | ⊢ ( 4  ∈  ℝ  ∧  0  <  4 ) | 
						
							| 125 |  | ltmuldiv2 | ⊢ ( ( ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  ∈  ℝ  ∧  ( 𝑥 ↑ 2 )  ∈  ℝ  ∧  ( 4  ∈  ℝ  ∧  0  <  4 ) )  →  ( ( 4  ·  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  <  ( 𝑥 ↑ 2 )  ↔  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  <  ( ( 𝑥 ↑ 2 )  /  4 ) ) ) | 
						
							| 126 | 124 125 | mp3an3 | ⊢ ( ( ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  ∈  ℝ  ∧  ( 𝑥 ↑ 2 )  ∈  ℝ )  →  ( ( 4  ·  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  <  ( 𝑥 ↑ 2 )  ↔  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  <  ( ( 𝑥 ↑ 2 )  /  4 ) ) ) | 
						
							| 127 | 62 55 126 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( 4  ·  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  <  ( 𝑥 ↑ 2 )  ↔  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  <  ( ( 𝑥 ↑ 2 )  /  4 ) ) ) | 
						
							| 128 | 123 127 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 4  ·  ( 1  /  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  <  ( 𝑥 ↑ 2 ) ) | 
						
							| 129 | 48 53 55 109 128 | lelttrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  <  ( 𝑥 ↑ 2 ) ) | 
						
							| 130 |  | metge0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑛 )  ∈  𝑋 )  →  0  ≤  ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 131 | 30 41 45 130 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  0  ≤  ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 132 |  | rprege0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) | 
						
							| 133 | 132 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) | 
						
							| 134 |  | lt2sq | ⊢ ( ( ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ  ∧  0  ≤  ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) )  ∧  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) )  →  ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ↔  ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  <  ( 𝑥 ↑ 2 ) ) ) | 
						
							| 135 | 47 131 133 134 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ↔  ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 )  <  ( 𝑥 ↑ 2 ) ) ) | 
						
							| 136 | 129 135 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) )  →  ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) | 
						
							| 137 | 136 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) | 
						
							| 138 |  | fveq2 | ⊢ ( 𝑗  =  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  →  ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) | 
						
							| 139 |  | fveq2 | ⊢ ( 𝑗  =  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ) | 
						
							| 140 | 139 | oveq1d | ⊢ ( 𝑗  =  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  →  ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  =  ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 141 | 140 | breq1d | ⊢ ( 𝑗  =  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  →  ( ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ↔  ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) ) | 
						
							| 142 | 138 141 | raleqbidv | ⊢ ( 𝑗  =  ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ↔  ∀ 𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) ) | 
						
							| 143 | 142 | rspcev | ⊢ ( ( ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 )  ∈  ℕ  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4  /  ( 𝑥 ↑ 2 ) ) )  +  1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) | 
						
							| 144 | 26 137 143 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) | 
						
							| 145 | 144 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) | 
						
							| 146 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 147 | 1 8 | imsxmet | ⊢ ( 𝑈  ∈  NrmCVec  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 148 | 5 27 147 | 3syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 149 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 150 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 151 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 152 | 12 36 | fssd | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ 𝑋 ) | 
						
							| 153 | 146 148 149 150 151 152 | iscauf | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( Cau ‘ 𝐷 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) ) | 
						
							| 154 | 145 153 | mpbird | ⊢ ( 𝜑  →  𝐹  ∈  ( Cau ‘ 𝐷 ) ) |