Metamath Proof Explorer


Theorem minvecolem3

Description: Lemma for minveco . The sequence formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X = BaseSet U
minveco.m M = - v U
minveco.n N = norm CV U
minveco.y Y = BaseSet W
minveco.u φ U CPreHil OLD
minveco.w φ W SubSp U CBan
minveco.a φ A X
minveco.d D = IndMet U
minveco.j J = MetOpen D
minveco.r R = ran y Y N A M y
minveco.s S = sup R <
minveco.f φ F : Y
minveco.1 φ n A D F n 2 S 2 + 1 n
Assertion minvecolem3 φ F Cau D

Proof

Step Hyp Ref Expression
1 minveco.x X = BaseSet U
2 minveco.m M = - v U
3 minveco.n N = norm CV U
4 minveco.y Y = BaseSet W
5 minveco.u φ U CPreHil OLD
6 minveco.w φ W SubSp U CBan
7 minveco.a φ A X
8 minveco.d D = IndMet U
9 minveco.j J = MetOpen D
10 minveco.r R = ran y Y N A M y
11 minveco.s S = sup R <
12 minveco.f φ F : Y
13 minveco.1 φ n A D F n 2 S 2 + 1 n
14 4re 4
15 4pos 0 < 4
16 14 15 elrpii 4 +
17 simpr φ x + x +
18 2z 2
19 rpexpcl x + 2 x 2 +
20 17 18 19 sylancl φ x + x 2 +
21 rpdivcl 4 + x 2 + 4 x 2 +
22 16 20 21 sylancr φ x + 4 x 2 +
23 rprege0 4 x 2 + 4 x 2 0 4 x 2
24 flge0nn0 4 x 2 0 4 x 2 4 x 2 0
25 nn0p1nn 4 x 2 0 4 x 2 + 1
26 22 23 24 25 4syl φ x + 4 x 2 + 1
27 phnv U CPreHil OLD U NrmCVec
28 1 8 imsmet U NrmCVec D Met X
29 5 27 28 3syl φ D Met X
30 29 ad2antrr φ x + n 4 x 2 + 1 D Met X
31 5 27 syl φ U NrmCVec
32 inss1 SubSp U CBan SubSp U
33 32 6 sseldi φ W SubSp U
34 eqid SubSp U = SubSp U
35 1 4 34 sspba U NrmCVec W SubSp U Y X
36 31 33 35 syl2anc φ Y X
37 36 ad2antrr φ x + n 4 x 2 + 1 Y X
38 12 ad2antrr φ x + n 4 x 2 + 1 F : Y
39 26 adantr φ x + n 4 x 2 + 1 4 x 2 + 1
40 38 39 ffvelrnd φ x + n 4 x 2 + 1 F 4 x 2 + 1 Y
41 37 40 sseldd φ x + n 4 x 2 + 1 F 4 x 2 + 1 X
42 eluznn 4 x 2 + 1 n 4 x 2 + 1 n
43 26 42 sylan φ x + n 4 x 2 + 1 n
44 38 43 ffvelrnd φ x + n 4 x 2 + 1 F n Y
45 37 44 sseldd φ x + n 4 x 2 + 1 F n X
46 metcl D Met X F 4 x 2 + 1 X F n X F 4 x 2 + 1 D F n
47 30 41 45 46 syl3anc φ x + n 4 x 2 + 1 F 4 x 2 + 1 D F n
48 47 resqcld φ x + n 4 x 2 + 1 F 4 x 2 + 1 D F n 2
49 39 nnrpd φ x + n 4 x 2 + 1 4 x 2 + 1 +
50 49 rpreccld φ x + n 4 x 2 + 1 1 4 x 2 + 1 +
51 rpmulcl 4 + 1 4 x 2 + 1 + 4 1 4 x 2 + 1 +
52 16 50 51 sylancr φ x + n 4 x 2 + 1 4 1 4 x 2 + 1 +
53 52 rpred φ x + n 4 x 2 + 1 4 1 4 x 2 + 1
54 20 adantr φ x + n 4 x 2 + 1 x 2 +
55 54 rpred φ x + n 4 x 2 + 1 x 2
56 5 ad2antrr φ x + n 4 x 2 + 1 U CPreHil OLD
57 6 ad2antrr φ x + n 4 x 2 + 1 W SubSp U CBan
58 7 ad2antrr φ x + n 4 x 2 + 1 A X
59 26 nnrpd φ x + 4 x 2 + 1 +
60 59 rpreccld φ x + 1 4 x 2 + 1 +
61 60 adantr φ x + n 4 x 2 + 1 1 4 x 2 + 1 +
62 61 rpred φ x + n 4 x 2 + 1 1 4 x 2 + 1
63 61 rpge0d φ x + n 4 x 2 + 1 0 1 4 x 2 + 1
64 12 adantr φ x + F : Y
65 64 ffvelrnda φ x + n F n Y
66 43 65 syldan φ x + n 4 x 2 + 1 F n Y
67 fveq2 n = 4 x 2 + 1 F n = F 4 x 2 + 1
68 67 oveq2d n = 4 x 2 + 1 A D F n = A D F 4 x 2 + 1
69 68 oveq1d n = 4 x 2 + 1 A D F n 2 = A D F 4 x 2 + 1 2
70 oveq2 n = 4 x 2 + 1 1 n = 1 4 x 2 + 1
71 70 oveq2d n = 4 x 2 + 1 S 2 + 1 n = S 2 + 1 4 x 2 + 1
72 69 71 breq12d n = 4 x 2 + 1 A D F n 2 S 2 + 1 n A D F 4 x 2 + 1 2 S 2 + 1 4 x 2 + 1
73 13 ralrimiva φ n A D F n 2 S 2 + 1 n
74 73 ad2antrr φ x + n 4 x 2 + 1 n A D F n 2 S 2 + 1 n
75 72 74 39 rspcdva φ x + n 4 x 2 + 1 A D F 4 x 2 + 1 2 S 2 + 1 4 x 2 + 1
76 37 66 sseldd φ x + n 4 x 2 + 1 F n X
77 metcl D Met X A X F n X A D F n
78 30 58 76 77 syl3anc φ x + n 4 x 2 + 1 A D F n
79 78 resqcld φ x + n 4 x 2 + 1 A D F n 2
80 1 2 3 4 5 6 7 8 9 10 minvecolem1 φ R R w R 0 w
81 0re 0
82 breq1 x = 0 x w 0 w
83 82 ralbidv x = 0 w R x w w R 0 w
84 83 rspcev 0 w R 0 w x w R x w
85 81 84 mpan w R 0 w x w R x w
86 85 3anim3i R R w R 0 w R R x w R x w
87 infrecl R R x w R x w sup R <
88 80 86 87 3syl φ sup R <
89 11 88 eqeltrid φ S
90 89 resqcld φ S 2
91 90 ad2antrr φ x + n 4 x 2 + 1 S 2
92 43 nnrecred φ x + n 4 x 2 + 1 1 n
93 91 92 readdcld φ x + n 4 x 2 + 1 S 2 + 1 n
94 91 62 readdcld φ x + n 4 x 2 + 1 S 2 + 1 4 x 2 + 1
95 13 adantlr φ x + n A D F n 2 S 2 + 1 n
96 43 95 syldan φ x + n 4 x 2 + 1 A D F n 2 S 2 + 1 n
97 eluzle n 4 x 2 + 1 4 x 2 + 1 n
98 97 adantl φ x + n 4 x 2 + 1 4 x 2 + 1 n
99 49 rpregt0d φ x + n 4 x 2 + 1 4 x 2 + 1 0 < 4 x 2 + 1
100 nnre n n
101 nngt0 n 0 < n
102 100 101 jca n n 0 < n
103 43 102 syl φ x + n 4 x 2 + 1 n 0 < n
104 lerec 4 x 2 + 1 0 < 4 x 2 + 1 n 0 < n 4 x 2 + 1 n 1 n 1 4 x 2 + 1
105 99 103 104 syl2anc φ x + n 4 x 2 + 1 4 x 2 + 1 n 1 n 1 4 x 2 + 1
106 98 105 mpbid φ x + n 4 x 2 + 1 1 n 1 4 x 2 + 1
107 92 62 91 106 leadd2dd φ x + n 4 x 2 + 1 S 2 + 1 n S 2 + 1 4 x 2 + 1
108 79 93 94 96 107 letrd φ x + n 4 x 2 + 1 A D F n 2 S 2 + 1 4 x 2 + 1
109 1 2 3 4 56 57 58 8 9 10 11 62 63 40 66 75 108 minvecolem2 φ x + n 4 x 2 + 1 F 4 x 2 + 1 D F n 2 4 1 4 x 2 + 1
110 rpdivcl x 2 + 4 + x 2 4 +
111 54 16 110 sylancl φ x + n 4 x 2 + 1 x 2 4 +
112 rpcnne0 x 2 + x 2 x 2 0
113 54 112 syl φ x + n 4 x 2 + 1 x 2 x 2 0
114 rpcnne0 4 + 4 4 0
115 16 114 ax-mp 4 4 0
116 recdiv x 2 x 2 0 4 4 0 1 x 2 4 = 4 x 2
117 113 115 116 sylancl φ x + n 4 x 2 + 1 1 x 2 4 = 4 x 2
118 22 adantr φ x + n 4 x 2 + 1 4 x 2 +
119 118 rpred φ x + n 4 x 2 + 1 4 x 2
120 flltp1 4 x 2 4 x 2 < 4 x 2 + 1
121 119 120 syl φ x + n 4 x 2 + 1 4 x 2 < 4 x 2 + 1
122 117 121 eqbrtrd φ x + n 4 x 2 + 1 1 x 2 4 < 4 x 2 + 1
123 111 49 122 ltrec1d φ x + n 4 x 2 + 1 1 4 x 2 + 1 < x 2 4
124 14 15 pm3.2i 4 0 < 4
125 ltmuldiv2 1 4 x 2 + 1 x 2 4 0 < 4 4 1 4 x 2 + 1 < x 2 1 4 x 2 + 1 < x 2 4
126 124 125 mp3an3 1 4 x 2 + 1 x 2 4 1 4 x 2 + 1 < x 2 1 4 x 2 + 1 < x 2 4
127 62 55 126 syl2anc φ x + n 4 x 2 + 1 4 1 4 x 2 + 1 < x 2 1 4 x 2 + 1 < x 2 4
128 123 127 mpbird φ x + n 4 x 2 + 1 4 1 4 x 2 + 1 < x 2
129 48 53 55 109 128 lelttrd φ x + n 4 x 2 + 1 F 4 x 2 + 1 D F n 2 < x 2
130 metge0 D Met X F 4 x 2 + 1 X F n X 0 F 4 x 2 + 1 D F n
131 30 41 45 130 syl3anc φ x + n 4 x 2 + 1 0 F 4 x 2 + 1 D F n
132 rprege0 x + x 0 x
133 132 ad2antlr φ x + n 4 x 2 + 1 x 0 x
134 lt2sq F 4 x 2 + 1 D F n 0 F 4 x 2 + 1 D F n x 0 x F 4 x 2 + 1 D F n < x F 4 x 2 + 1 D F n 2 < x 2
135 47 131 133 134 syl21anc φ x + n 4 x 2 + 1 F 4 x 2 + 1 D F n < x F 4 x 2 + 1 D F n 2 < x 2
136 129 135 mpbird φ x + n 4 x 2 + 1 F 4 x 2 + 1 D F n < x
137 136 ralrimiva φ x + n 4 x 2 + 1 F 4 x 2 + 1 D F n < x
138 fveq2 j = 4 x 2 + 1 j = 4 x 2 + 1
139 fveq2 j = 4 x 2 + 1 F j = F 4 x 2 + 1
140 139 oveq1d j = 4 x 2 + 1 F j D F n = F 4 x 2 + 1 D F n
141 140 breq1d j = 4 x 2 + 1 F j D F n < x F 4 x 2 + 1 D F n < x
142 138 141 raleqbidv j = 4 x 2 + 1 n j F j D F n < x n 4 x 2 + 1 F 4 x 2 + 1 D F n < x
143 142 rspcev 4 x 2 + 1 n 4 x 2 + 1 F 4 x 2 + 1 D F n < x j n j F j D F n < x
144 26 137 143 syl2anc φ x + j n j F j D F n < x
145 144 ralrimiva φ x + j n j F j D F n < x
146 nnuz = 1
147 1 8 imsxmet U NrmCVec D ∞Met X
148 5 27 147 3syl φ D ∞Met X
149 1zzd φ 1
150 eqidd φ n F n = F n
151 eqidd φ j F j = F j
152 12 36 fssd φ F : X
153 146 148 149 150 151 152 iscauf φ F Cau D x + j n j F j D F n < x
154 145 153 mpbird φ F Cau D