Metamath Proof Explorer


Theorem minvecolem3

Description: Lemma for minveco . The sequence formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X=BaseSetU
minveco.m M=-vU
minveco.n N=normCVU
minveco.y Y=BaseSetW
minveco.u φUCPreHilOLD
minveco.w φWSubSpUCBan
minveco.a φAX
minveco.d D=IndMetU
minveco.j J=MetOpenD
minveco.r R=ranyYNAMy
minveco.s S=supR<
minveco.f φF:Y
minveco.1 φnADFn2S2+1n
Assertion minvecolem3 φFCauD

Proof

Step Hyp Ref Expression
1 minveco.x X=BaseSetU
2 minveco.m M=-vU
3 minveco.n N=normCVU
4 minveco.y Y=BaseSetW
5 minveco.u φUCPreHilOLD
6 minveco.w φWSubSpUCBan
7 minveco.a φAX
8 minveco.d D=IndMetU
9 minveco.j J=MetOpenD
10 minveco.r R=ranyYNAMy
11 minveco.s S=supR<
12 minveco.f φF:Y
13 minveco.1 φnADFn2S2+1n
14 4re 4
15 4pos 0<4
16 14 15 elrpii 4+
17 simpr φx+x+
18 2z 2
19 rpexpcl x+2x2+
20 17 18 19 sylancl φx+x2+
21 rpdivcl 4+x2+4x2+
22 16 20 21 sylancr φx+4x2+
23 rprege0 4x2+4x204x2
24 flge0nn0 4x204x24x20
25 nn0p1nn 4x204x2+1
26 22 23 24 25 4syl φx+4x2+1
27 phnv UCPreHilOLDUNrmCVec
28 1 8 imsmet UNrmCVecDMetX
29 5 27 28 3syl φDMetX
30 29 ad2antrr φx+n4x2+1DMetX
31 5 27 syl φUNrmCVec
32 inss1 SubSpUCBanSubSpU
33 32 6 sselid φWSubSpU
34 eqid SubSpU=SubSpU
35 1 4 34 sspba UNrmCVecWSubSpUYX
36 31 33 35 syl2anc φYX
37 36 ad2antrr φx+n4x2+1YX
38 12 ad2antrr φx+n4x2+1F:Y
39 26 adantr φx+n4x2+14x2+1
40 38 39 ffvelcdmd φx+n4x2+1F4x2+1Y
41 37 40 sseldd φx+n4x2+1F4x2+1X
42 eluznn 4x2+1n4x2+1n
43 26 42 sylan φx+n4x2+1n
44 38 43 ffvelcdmd φx+n4x2+1FnY
45 37 44 sseldd φx+n4x2+1FnX
46 metcl DMetXF4x2+1XFnXF4x2+1DFn
47 30 41 45 46 syl3anc φx+n4x2+1F4x2+1DFn
48 47 resqcld φx+n4x2+1F4x2+1DFn2
49 39 nnrpd φx+n4x2+14x2+1+
50 49 rpreccld φx+n4x2+114x2+1+
51 rpmulcl 4+14x2+1+414x2+1+
52 16 50 51 sylancr φx+n4x2+1414x2+1+
53 52 rpred φx+n4x2+1414x2+1
54 20 adantr φx+n4x2+1x2+
55 54 rpred φx+n4x2+1x2
56 5 ad2antrr φx+n4x2+1UCPreHilOLD
57 6 ad2antrr φx+n4x2+1WSubSpUCBan
58 7 ad2antrr φx+n4x2+1AX
59 26 nnrpd φx+4x2+1+
60 59 rpreccld φx+14x2+1+
61 60 adantr φx+n4x2+114x2+1+
62 61 rpred φx+n4x2+114x2+1
63 61 rpge0d φx+n4x2+1014x2+1
64 12 adantr φx+F:Y
65 64 ffvelcdmda φx+nFnY
66 43 65 syldan φx+n4x2+1FnY
67 fveq2 n=4x2+1Fn=F4x2+1
68 67 oveq2d n=4x2+1ADFn=ADF4x2+1
69 68 oveq1d n=4x2+1ADFn2=ADF4x2+12
70 oveq2 n=4x2+11n=14x2+1
71 70 oveq2d n=4x2+1S2+1n=S2+14x2+1
72 69 71 breq12d n=4x2+1ADFn2S2+1nADF4x2+12S2+14x2+1
73 13 ralrimiva φnADFn2S2+1n
74 73 ad2antrr φx+n4x2+1nADFn2S2+1n
75 72 74 39 rspcdva φx+n4x2+1ADF4x2+12S2+14x2+1
76 37 66 sseldd φx+n4x2+1FnX
77 metcl DMetXAXFnXADFn
78 30 58 76 77 syl3anc φx+n4x2+1ADFn
79 78 resqcld φx+n4x2+1ADFn2
80 1 2 3 4 5 6 7 8 9 10 minvecolem1 φRRwR0w
81 0re 0
82 breq1 x=0xw0w
83 82 ralbidv x=0wRxwwR0w
84 83 rspcev 0wR0wxwRxw
85 81 84 mpan wR0wxwRxw
86 85 3anim3i RRwR0wRRxwRxw
87 infrecl RRxwRxwsupR<
88 80 86 87 3syl φsupR<
89 11 88 eqeltrid φS
90 89 resqcld φS2
91 90 ad2antrr φx+n4x2+1S2
92 43 nnrecred φx+n4x2+11n
93 91 92 readdcld φx+n4x2+1S2+1n
94 91 62 readdcld φx+n4x2+1S2+14x2+1
95 13 adantlr φx+nADFn2S2+1n
96 43 95 syldan φx+n4x2+1ADFn2S2+1n
97 eluzle n4x2+14x2+1n
98 97 adantl φx+n4x2+14x2+1n
99 49 rpregt0d φx+n4x2+14x2+10<4x2+1
100 nnre nn
101 nngt0 n0<n
102 100 101 jca nn0<n
103 43 102 syl φx+n4x2+1n0<n
104 lerec 4x2+10<4x2+1n0<n4x2+1n1n14x2+1
105 99 103 104 syl2anc φx+n4x2+14x2+1n1n14x2+1
106 98 105 mpbid φx+n4x2+11n14x2+1
107 92 62 91 106 leadd2dd φx+n4x2+1S2+1nS2+14x2+1
108 79 93 94 96 107 letrd φx+n4x2+1ADFn2S2+14x2+1
109 1 2 3 4 56 57 58 8 9 10 11 62 63 40 66 75 108 minvecolem2 φx+n4x2+1F4x2+1DFn2414x2+1
110 rpdivcl x2+4+x24+
111 54 16 110 sylancl φx+n4x2+1x24+
112 rpcnne0 x2+x2x20
113 54 112 syl φx+n4x2+1x2x20
114 rpcnne0 4+440
115 16 114 ax-mp 440
116 recdiv x2x204401x24=4x2
117 113 115 116 sylancl φx+n4x2+11x24=4x2
118 22 adantr φx+n4x2+14x2+
119 118 rpred φx+n4x2+14x2
120 flltp1 4x24x2<4x2+1
121 119 120 syl φx+n4x2+14x2<4x2+1
122 117 121 eqbrtrd φx+n4x2+11x24<4x2+1
123 111 49 122 ltrec1d φx+n4x2+114x2+1<x24
124 14 15 pm3.2i 40<4
125 ltmuldiv2 14x2+1x240<4414x2+1<x214x2+1<x24
126 124 125 mp3an3 14x2+1x2414x2+1<x214x2+1<x24
127 62 55 126 syl2anc φx+n4x2+1414x2+1<x214x2+1<x24
128 123 127 mpbird φx+n4x2+1414x2+1<x2
129 48 53 55 109 128 lelttrd φx+n4x2+1F4x2+1DFn2<x2
130 metge0 DMetXF4x2+1XFnX0F4x2+1DFn
131 30 41 45 130 syl3anc φx+n4x2+10F4x2+1DFn
132 rprege0 x+x0x
133 132 ad2antlr φx+n4x2+1x0x
134 lt2sq F4x2+1DFn0F4x2+1DFnx0xF4x2+1DFn<xF4x2+1DFn2<x2
135 47 131 133 134 syl21anc φx+n4x2+1F4x2+1DFn<xF4x2+1DFn2<x2
136 129 135 mpbird φx+n4x2+1F4x2+1DFn<x
137 136 ralrimiva φx+n4x2+1F4x2+1DFn<x
138 fveq2 j=4x2+1j=4x2+1
139 fveq2 j=4x2+1Fj=F4x2+1
140 139 oveq1d j=4x2+1FjDFn=F4x2+1DFn
141 140 breq1d j=4x2+1FjDFn<xF4x2+1DFn<x
142 138 141 raleqbidv j=4x2+1njFjDFn<xn4x2+1F4x2+1DFn<x
143 142 rspcev 4x2+1n4x2+1F4x2+1DFn<xjnjFjDFn<x
144 26 137 143 syl2anc φx+jnjFjDFn<x
145 144 ralrimiva φx+jnjFjDFn<x
146 nnuz =1
147 1 8 imsxmet UNrmCVecD∞MetX
148 5 27 147 3syl φD∞MetX
149 1zzd φ1
150 eqidd φnFn=Fn
151 eqidd φjFj=Fj
152 12 36 fssd φF:X
153 146 148 149 150 151 152 iscauf φFCauDx+jnjFjDFn<x
154 145 153 mpbird φFCauD