Metamath Proof Explorer


Theorem minvecolem2

Description: Lemma for minveco . Any two points K and L in Y are close to each other if they are close to the infimum of distance to A . (Contributed by Mario Carneiro, 9-May-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X = BaseSet U
minveco.m M = - v U
minveco.n N = norm CV U
minveco.y Y = BaseSet W
minveco.u φ U CPreHil OLD
minveco.w φ W SubSp U CBan
minveco.a φ A X
minveco.d D = IndMet U
minveco.j J = MetOpen D
minveco.r R = ran y Y N A M y
minveco.s S = sup R <
minvecolem2.1 φ B
minvecolem2.2 φ 0 B
minvecolem2.3 φ K Y
minvecolem2.4 φ L Y
minvecolem2.5 φ A D K 2 S 2 + B
minvecolem2.6 φ A D L 2 S 2 + B
Assertion minvecolem2 φ K D L 2 4 B

Proof

Step Hyp Ref Expression
1 minveco.x X = BaseSet U
2 minveco.m M = - v U
3 minveco.n N = norm CV U
4 minveco.y Y = BaseSet W
5 minveco.u φ U CPreHil OLD
6 minveco.w φ W SubSp U CBan
7 minveco.a φ A X
8 minveco.d D = IndMet U
9 minveco.j J = MetOpen D
10 minveco.r R = ran y Y N A M y
11 minveco.s S = sup R <
12 minvecolem2.1 φ B
13 minvecolem2.2 φ 0 B
14 minvecolem2.3 φ K Y
15 minvecolem2.4 φ L Y
16 minvecolem2.5 φ A D K 2 S 2 + B
17 minvecolem2.6 φ A D L 2 S 2 + B
18 4re 4
19 1 2 3 4 5 6 7 8 9 10 minvecolem1 φ R R w R 0 w
20 19 simp1d φ R
21 19 simp2d φ R
22 0re 0
23 19 simp3d φ w R 0 w
24 breq1 x = 0 x w 0 w
25 24 ralbidv x = 0 w R x w w R 0 w
26 25 rspcev 0 w R 0 w x w R x w
27 22 23 26 sylancr φ x w R x w
28 infrecl R R x w R x w sup R <
29 20 21 27 28 syl3anc φ sup R <
30 11 29 eqeltrid φ S
31 30 resqcld φ S 2
32 remulcl 4 S 2 4 S 2
33 18 31 32 sylancr φ 4 S 2
34 phnv U CPreHil OLD U NrmCVec
35 5 34 syl φ U NrmCVec
36 1 8 imsmet U NrmCVec D Met X
37 35 36 syl φ D Met X
38 inss1 SubSp U CBan SubSp U
39 38 6 sselid φ W SubSp U
40 eqid SubSp U = SubSp U
41 1 4 40 sspba U NrmCVec W SubSp U Y X
42 35 39 41 syl2anc φ Y X
43 42 14 sseldd φ K X
44 42 15 sseldd φ L X
45 metcl D Met X K X L X K D L
46 37 43 44 45 syl3anc φ K D L
47 46 resqcld φ K D L 2
48 33 47 readdcld φ 4 S 2 + K D L 2
49 ax-1cn 1
50 halfcl 1 1 2
51 49 50 mp1i φ 1 2
52 eqid + v U = + v U
53 eqid + v W = + v W
54 4 52 53 40 sspgval U NrmCVec W SubSp U K Y L Y K + v W L = K + v U L
55 35 39 14 15 54 syl22anc φ K + v W L = K + v U L
56 40 sspnv U NrmCVec W SubSp U W NrmCVec
57 35 39 56 syl2anc φ W NrmCVec
58 4 53 nvgcl W NrmCVec K Y L Y K + v W L Y
59 57 14 15 58 syl3anc φ K + v W L Y
60 55 59 eqeltrrd φ K + v U L Y
61 eqid 𝑠OLD U = 𝑠OLD U
62 eqid 𝑠OLD W = 𝑠OLD W
63 4 61 62 40 sspsval U NrmCVec W SubSp U 1 2 K + v U L Y 1 2 𝑠OLD W K + v U L = 1 2 𝑠OLD U K + v U L
64 35 39 51 60 63 syl22anc φ 1 2 𝑠OLD W K + v U L = 1 2 𝑠OLD U K + v U L
65 4 62 nvscl W NrmCVec 1 2 K + v U L Y 1 2 𝑠OLD W K + v U L Y
66 57 51 60 65 syl3anc φ 1 2 𝑠OLD W K + v U L Y
67 64 66 eqeltrrd φ 1 2 𝑠OLD U K + v U L Y
68 42 67 sseldd φ 1 2 𝑠OLD U K + v U L X
69 1 2 nvmcl U NrmCVec A X 1 2 𝑠OLD U K + v U L X A M 1 2 𝑠OLD U K + v U L X
70 35 7 68 69 syl3anc φ A M 1 2 𝑠OLD U K + v U L X
71 1 3 nvcl U NrmCVec A M 1 2 𝑠OLD U K + v U L X N A M 1 2 𝑠OLD U K + v U L
72 35 70 71 syl2anc φ N A M 1 2 𝑠OLD U K + v U L
73 72 resqcld φ N A M 1 2 𝑠OLD U K + v U L 2
74 remulcl 4 N A M 1 2 𝑠OLD U K + v U L 2 4 N A M 1 2 𝑠OLD U K + v U L 2
75 18 73 74 sylancr φ 4 N A M 1 2 𝑠OLD U K + v U L 2
76 75 47 readdcld φ 4 N A M 1 2 𝑠OLD U K + v U L 2 + K D L 2
77 31 12 readdcld φ S 2 + B
78 remulcl 4 S 2 + B 4 S 2 + B
79 18 77 78 sylancr φ 4 S 2 + B
80 22 a1i φ 0
81 infregelb R R x w R x w 0 0 sup R < w R 0 w
82 20 21 27 80 81 syl31anc φ 0 sup R < w R 0 w
83 23 82 mpbird φ 0 sup R <
84 83 11 breqtrrdi φ 0 S
85 eqid N A M 1 2 𝑠OLD U K + v U L = N A M 1 2 𝑠OLD U K + v U L
86 oveq2 y = 1 2 𝑠OLD U K + v U L A M y = A M 1 2 𝑠OLD U K + v U L
87 86 fveq2d y = 1 2 𝑠OLD U K + v U L N A M y = N A M 1 2 𝑠OLD U K + v U L
88 87 rspceeqv 1 2 𝑠OLD U K + v U L Y N A M 1 2 𝑠OLD U K + v U L = N A M 1 2 𝑠OLD U K + v U L y Y N A M 1 2 𝑠OLD U K + v U L = N A M y
89 67 85 88 sylancl φ y Y N A M 1 2 𝑠OLD U K + v U L = N A M y
90 eqid y Y N A M y = y Y N A M y
91 fvex N A M y V
92 90 91 elrnmpti N A M 1 2 𝑠OLD U K + v U L ran y Y N A M y y Y N A M 1 2 𝑠OLD U K + v U L = N A M y
93 89 92 sylibr φ N A M 1 2 𝑠OLD U K + v U L ran y Y N A M y
94 93 10 eleqtrrdi φ N A M 1 2 𝑠OLD U K + v U L R
95 infrelb R x w R x w N A M 1 2 𝑠OLD U K + v U L R sup R < N A M 1 2 𝑠OLD U K + v U L
96 20 27 94 95 syl3anc φ sup R < N A M 1 2 𝑠OLD U K + v U L
97 11 96 eqbrtrid φ S N A M 1 2 𝑠OLD U K + v U L
98 le2sq2 S 0 S N A M 1 2 𝑠OLD U K + v U L S N A M 1 2 𝑠OLD U K + v U L S 2 N A M 1 2 𝑠OLD U K + v U L 2
99 30 84 72 97 98 syl22anc φ S 2 N A M 1 2 𝑠OLD U K + v U L 2
100 4pos 0 < 4
101 18 100 pm3.2i 4 0 < 4
102 lemul2 S 2 N A M 1 2 𝑠OLD U K + v U L 2 4 0 < 4 S 2 N A M 1 2 𝑠OLD U K + v U L 2 4 S 2 4 N A M 1 2 𝑠OLD U K + v U L 2
103 101 102 mp3an3 S 2 N A M 1 2 𝑠OLD U K + v U L 2 S 2 N A M 1 2 𝑠OLD U K + v U L 2 4 S 2 4 N A M 1 2 𝑠OLD U K + v U L 2
104 31 73 103 syl2anc φ S 2 N A M 1 2 𝑠OLD U K + v U L 2 4 S 2 4 N A M 1 2 𝑠OLD U K + v U L 2
105 99 104 mpbid φ 4 S 2 4 N A M 1 2 𝑠OLD U K + v U L 2
106 33 75 47 105 leadd1dd φ 4 S 2 + K D L 2 4 N A M 1 2 𝑠OLD U K + v U L 2 + K D L 2
107 metcl D Met X A X K X A D K
108 37 7 43 107 syl3anc φ A D K
109 108 resqcld φ A D K 2
110 metcl D Met X A X L X A D L
111 37 7 44 110 syl3anc φ A D L
112 111 resqcld φ A D L 2
113 109 112 77 77 16 17 le2addd φ A D K 2 + A D L 2 S 2 + B + S 2 + B
114 77 recnd φ S 2 + B
115 114 2timesd φ 2 S 2 + B = S 2 + B + S 2 + B
116 113 115 breqtrrd φ A D K 2 + A D L 2 2 S 2 + B
117 109 112 readdcld φ A D K 2 + A D L 2
118 2re 2
119 remulcl 2 S 2 + B 2 S 2 + B
120 118 77 119 sylancr φ 2 S 2 + B
121 2pos 0 < 2
122 118 121 pm3.2i 2 0 < 2
123 lemul2 A D K 2 + A D L 2 2 S 2 + B 2 0 < 2 A D K 2 + A D L 2 2 S 2 + B 2 A D K 2 + A D L 2 2 2 S 2 + B
124 122 123 mp3an3 A D K 2 + A D L 2 2 S 2 + B A D K 2 + A D L 2 2 S 2 + B 2 A D K 2 + A D L 2 2 2 S 2 + B
125 117 120 124 syl2anc φ A D K 2 + A D L 2 2 S 2 + B 2 A D K 2 + A D L 2 2 2 S 2 + B
126 116 125 mpbid φ 2 A D K 2 + A D L 2 2 2 S 2 + B
127 1 2 nvmcl U NrmCVec A X K X A M K X
128 35 7 43 127 syl3anc φ A M K X
129 1 2 nvmcl U NrmCVec A X L X A M L X
130 35 7 44 129 syl3anc φ A M L X
131 1 52 2 3 phpar2 U CPreHil OLD A M K X A M L X N A M K + v U A M L 2 + N A M K M A M L 2 = 2 N A M K 2 + N A M L 2
132 5 128 130 131 syl3anc φ N A M K + v U A M L 2 + N A M K M A M L 2 = 2 N A M K 2 + N A M L 2
133 2cn 2
134 72 recnd φ N A M 1 2 𝑠OLD U K + v U L
135 sqmul 2 N A M 1 2 𝑠OLD U K + v U L 2 N A M 1 2 𝑠OLD U K + v U L 2 = 2 2 N A M 1 2 𝑠OLD U K + v U L 2
136 133 134 135 sylancr φ 2 N A M 1 2 𝑠OLD U K + v U L 2 = 2 2 N A M 1 2 𝑠OLD U K + v U L 2
137 sq2 2 2 = 4
138 137 oveq1i 2 2 N A M 1 2 𝑠OLD U K + v U L 2 = 4 N A M 1 2 𝑠OLD U K + v U L 2
139 136 138 eqtrdi φ 2 N A M 1 2 𝑠OLD U K + v U L 2 = 4 N A M 1 2 𝑠OLD U K + v U L 2
140 133 a1i φ 2
141 1 61 3 nvs U NrmCVec 2 A M 1 2 𝑠OLD U K + v U L X N 2 𝑠OLD U A M 1 2 𝑠OLD U K + v U L = 2 N A M 1 2 𝑠OLD U K + v U L
142 35 140 70 141 syl3anc φ N 2 𝑠OLD U A M 1 2 𝑠OLD U K + v U L = 2 N A M 1 2 𝑠OLD U K + v U L
143 0le2 0 2
144 absid 2 0 2 2 = 2
145 118 143 144 mp2an 2 = 2
146 145 oveq1i 2 N A M 1 2 𝑠OLD U K + v U L = 2 N A M 1 2 𝑠OLD U K + v U L
147 142 146 eqtrdi φ N 2 𝑠OLD U A M 1 2 𝑠OLD U K + v U L = 2 N A M 1 2 𝑠OLD U K + v U L
148 1 2 61 nvmdi U NrmCVec 2 A X 1 2 𝑠OLD U K + v U L X 2 𝑠OLD U A M 1 2 𝑠OLD U K + v U L = 2 𝑠OLD U A M 2 𝑠OLD U 1 2 𝑠OLD U K + v U L
149 35 140 7 68 148 syl13anc φ 2 𝑠OLD U A M 1 2 𝑠OLD U K + v U L = 2 𝑠OLD U A M 2 𝑠OLD U 1 2 𝑠OLD U K + v U L
150 1 52 61 nv2 U NrmCVec A X A + v U A = 2 𝑠OLD U A
151 35 7 150 syl2anc φ A + v U A = 2 𝑠OLD U A
152 2ne0 2 0
153 133 152 recidi 2 1 2 = 1
154 153 oveq1i 2 1 2 𝑠OLD U K + v U L = 1 𝑠OLD U K + v U L
155 1 52 nvgcl U NrmCVec K X L X K + v U L X
156 35 43 44 155 syl3anc φ K + v U L X
157 1 61 nvsid U NrmCVec K + v U L X 1 𝑠OLD U K + v U L = K + v U L
158 35 156 157 syl2anc φ 1 𝑠OLD U K + v U L = K + v U L
159 154 158 eqtrid φ 2 1 2 𝑠OLD U K + v U L = K + v U L
160 1 61 nvsass U NrmCVec 2 1 2 K + v U L X 2 1 2 𝑠OLD U K + v U L = 2 𝑠OLD U 1 2 𝑠OLD U K + v U L
161 35 140 51 156 160 syl13anc φ 2 1 2 𝑠OLD U K + v U L = 2 𝑠OLD U 1 2 𝑠OLD U K + v U L
162 159 161 eqtr3d φ K + v U L = 2 𝑠OLD U 1 2 𝑠OLD U K + v U L
163 151 162 oveq12d φ A + v U A M K + v U L = 2 𝑠OLD U A M 2 𝑠OLD U 1 2 𝑠OLD U K + v U L
164 1 52 2 nvaddsub4 U NrmCVec A X A X K X L X A + v U A M K + v U L = A M K + v U A M L
165 35 7 7 43 44 164 syl122anc φ A + v U A M K + v U L = A M K + v U A M L
166 149 163 165 3eqtr2d φ 2 𝑠OLD U A M 1 2 𝑠OLD U K + v U L = A M K + v U A M L
167 166 fveq2d φ N 2 𝑠OLD U A M 1 2 𝑠OLD U K + v U L = N A M K + v U A M L
168 147 167 eqtr3d φ 2 N A M 1 2 𝑠OLD U K + v U L = N A M K + v U A M L
169 168 oveq1d φ 2 N A M 1 2 𝑠OLD U K + v U L 2 = N A M K + v U A M L 2
170 139 169 eqtr3d φ 4 N A M 1 2 𝑠OLD U K + v U L 2 = N A M K + v U A M L 2
171 1 2 3 8 imsdval U NrmCVec L X K X L D K = N L M K
172 35 44 43 171 syl3anc φ L D K = N L M K
173 metsym D Met X K X L X K D L = L D K
174 37 43 44 173 syl3anc φ K D L = L D K
175 1 2 nvnnncan1 U NrmCVec A X K X L X A M K M A M L = L M K
176 35 7 43 44 175 syl13anc φ A M K M A M L = L M K
177 176 fveq2d φ N A M K M A M L = N L M K
178 172 174 177 3eqtr4d φ K D L = N A M K M A M L
179 178 oveq1d φ K D L 2 = N A M K M A M L 2
180 170 179 oveq12d φ 4 N A M 1 2 𝑠OLD U K + v U L 2 + K D L 2 = N A M K + v U A M L 2 + N A M K M A M L 2
181 1 2 3 8 imsdval U NrmCVec A X K X A D K = N A M K
182 35 7 43 181 syl3anc φ A D K = N A M K
183 182 oveq1d φ A D K 2 = N A M K 2
184 1 2 3 8 imsdval U NrmCVec A X L X A D L = N A M L
185 35 7 44 184 syl3anc φ A D L = N A M L
186 185 oveq1d φ A D L 2 = N A M L 2
187 183 186 oveq12d φ A D K 2 + A D L 2 = N A M K 2 + N A M L 2
188 187 oveq2d φ 2 A D K 2 + A D L 2 = 2 N A M K 2 + N A M L 2
189 132 180 188 3eqtr4d φ 4 N A M 1 2 𝑠OLD U K + v U L 2 + K D L 2 = 2 A D K 2 + A D L 2
190 2t2e4 2 2 = 4
191 190 oveq1i 2 2 S 2 + B = 4 S 2 + B
192 140 140 114 mulassd φ 2 2 S 2 + B = 2 2 S 2 + B
193 191 192 eqtr3id φ 4 S 2 + B = 2 2 S 2 + B
194 126 189 193 3brtr4d φ 4 N A M 1 2 𝑠OLD U K + v U L 2 + K D L 2 4 S 2 + B
195 48 76 79 106 194 letrd φ 4 S 2 + K D L 2 4 S 2 + B
196 4cn 4
197 196 a1i φ 4
198 31 recnd φ S 2
199 12 recnd φ B
200 197 198 199 adddid φ 4 S 2 + B = 4 S 2 + 4 B
201 195 200 breqtrd φ 4 S 2 + K D L 2 4 S 2 + 4 B
202 remulcl 4 B 4 B
203 18 12 202 sylancr φ 4 B
204 47 203 33 leadd2d φ K D L 2 4 B 4 S 2 + K D L 2 4 S 2 + 4 B
205 201 204 mpbird φ K D L 2 4 B