Metamath Proof Explorer


Theorem nvmdi

Description: Distributive law for scalar product over subtraction. (Contributed by NM, 14-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvmdi.1 X = BaseSet U
nvmdi.3 M = - v U
nvmdi.4 S = 𝑠OLD U
Assertion nvmdi U NrmCVec A B X C X A S B M C = A S B M A S C

Proof

Step Hyp Ref Expression
1 nvmdi.1 X = BaseSet U
2 nvmdi.3 M = - v U
3 nvmdi.4 S = 𝑠OLD U
4 simpr1 U NrmCVec A B X C X A
5 simpr2 U NrmCVec A B X C X B X
6 neg1cn 1
7 1 3 nvscl U NrmCVec 1 C X -1 S C X
8 6 7 mp3an2 U NrmCVec C X -1 S C X
9 8 3ad2antr3 U NrmCVec A B X C X -1 S C X
10 4 5 9 3jca U NrmCVec A B X C X A B X -1 S C X
11 eqid + v U = + v U
12 1 11 3 nvdi U NrmCVec A B X -1 S C X A S B + v U -1 S C = A S B + v U A S -1 S C
13 10 12 syldan U NrmCVec A B X C X A S B + v U -1 S C = A S B + v U A S -1 S C
14 1 3 nvscom U NrmCVec A 1 C X A S -1 S C = -1 S A S C
15 6 14 mp3anr2 U NrmCVec A C X A S -1 S C = -1 S A S C
16 15 3adantr2 U NrmCVec A B X C X A S -1 S C = -1 S A S C
17 16 oveq2d U NrmCVec A B X C X A S B + v U A S -1 S C = A S B + v U -1 S A S C
18 13 17 eqtrd U NrmCVec A B X C X A S B + v U -1 S C = A S B + v U -1 S A S C
19 1 11 3 2 nvmval U NrmCVec B X C X B M C = B + v U -1 S C
20 19 3adant3r1 U NrmCVec A B X C X B M C = B + v U -1 S C
21 20 oveq2d U NrmCVec A B X C X A S B M C = A S B + v U -1 S C
22 simpl U NrmCVec A B X C X U NrmCVec
23 1 3 nvscl U NrmCVec A B X A S B X
24 23 3adant3r3 U NrmCVec A B X C X A S B X
25 1 3 nvscl U NrmCVec A C X A S C X
26 25 3adant3r2 U NrmCVec A B X C X A S C X
27 1 11 3 2 nvmval U NrmCVec A S B X A S C X A S B M A S C = A S B + v U -1 S A S C
28 22 24 26 27 syl3anc U NrmCVec A B X C X A S B M A S C = A S B + v U -1 S A S C
29 18 21 28 3eqtr4d U NrmCVec A B X C X A S B M C = A S B M A S C