Metamath Proof Explorer


Theorem phpar2

Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses isph.1 X=BaseSetU
isph.2 G=+vU
isph.3 M=-vU
isph.6 N=normCVU
Assertion phpar2 UCPreHilOLDAXBXNAGB2+NAMB2=2NA2+NB2

Proof

Step Hyp Ref Expression
1 isph.1 X=BaseSetU
2 isph.2 G=+vU
3 isph.3 M=-vU
4 isph.6 N=normCVU
5 1 2 3 4 isph UCPreHilOLDUNrmCVecxXyXNxGy2+NxMy2=2Nx2+Ny2
6 5 simprbi UCPreHilOLDxXyXNxGy2+NxMy2=2Nx2+Ny2
7 6 3ad2ant1 UCPreHilOLDAXBXxXyXNxGy2+NxMy2=2Nx2+Ny2
8 fvoveq1 x=ANxGy=NAGy
9 8 oveq1d x=ANxGy2=NAGy2
10 fvoveq1 x=ANxMy=NAMy
11 10 oveq1d x=ANxMy2=NAMy2
12 9 11 oveq12d x=ANxGy2+NxMy2=NAGy2+NAMy2
13 fveq2 x=ANx=NA
14 13 oveq1d x=ANx2=NA2
15 14 oveq1d x=ANx2+Ny2=NA2+Ny2
16 15 oveq2d x=A2Nx2+Ny2=2NA2+Ny2
17 12 16 eqeq12d x=ANxGy2+NxMy2=2Nx2+Ny2NAGy2+NAMy2=2NA2+Ny2
18 oveq2 y=BAGy=AGB
19 18 fveq2d y=BNAGy=NAGB
20 19 oveq1d y=BNAGy2=NAGB2
21 oveq2 y=BAMy=AMB
22 21 fveq2d y=BNAMy=NAMB
23 22 oveq1d y=BNAMy2=NAMB2
24 20 23 oveq12d y=BNAGy2+NAMy2=NAGB2+NAMB2
25 fveq2 y=BNy=NB
26 25 oveq1d y=BNy2=NB2
27 26 oveq2d y=BNA2+Ny2=NA2+NB2
28 27 oveq2d y=B2NA2+Ny2=2NA2+NB2
29 24 28 eqeq12d y=BNAGy2+NAMy2=2NA2+Ny2NAGB2+NAMB2=2NA2+NB2
30 17 29 rspc2v AXBXxXyXNxGy2+NxMy2=2Nx2+Ny2NAGB2+NAMB2=2NA2+NB2
31 30 3adant1 UCPreHilOLDAXBXxXyXNxGy2+NxMy2=2Nx2+Ny2NAGB2+NAMB2=2NA2+NB2
32 7 31 mpd UCPreHilOLDAXBXNAGB2+NAMB2=2NA2+NB2