Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isph.1 | |
|
isph.2 | |
||
isph.3 | |
||
isph.6 | |
||
Assertion | phpar2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isph.1 | |
|
2 | isph.2 | |
|
3 | isph.3 | |
|
4 | isph.6 | |
|
5 | 1 2 3 4 | isph | |
6 | 5 | simprbi | |
7 | 6 | 3ad2ant1 | |
8 | fvoveq1 | |
|
9 | 8 | oveq1d | |
10 | fvoveq1 | |
|
11 | 10 | oveq1d | |
12 | 9 11 | oveq12d | |
13 | fveq2 | |
|
14 | 13 | oveq1d | |
15 | 14 | oveq1d | |
16 | 15 | oveq2d | |
17 | 12 16 | eqeq12d | |
18 | oveq2 | |
|
19 | 18 | fveq2d | |
20 | 19 | oveq1d | |
21 | oveq2 | |
|
22 | 21 | fveq2d | |
23 | 22 | oveq1d | |
24 | 20 23 | oveq12d | |
25 | fveq2 | |
|
26 | 25 | oveq1d | |
27 | 26 | oveq2d | |
28 | 27 | oveq2d | |
29 | 24 28 | eqeq12d | |
30 | 17 29 | rspc2v | |
31 | 30 | 3adant1 | |
32 | 7 31 | mpd | |