| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isph.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | isph.2 | ⊢ 𝐺  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | isph.3 | ⊢ 𝑀  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 4 |  | isph.6 | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 5 | 1 2 3 4 | isph | ⊢ ( 𝑈  ∈  CPreHilOLD  ↔  ( 𝑈  ∈  NrmCVec  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) | 
						
							| 6 | 5 | simprbi | ⊢ ( 𝑈  ∈  CPreHilOLD  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑈  ∈  CPreHilOLD  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) | 
						
							| 8 |  | fvoveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) )  =  ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  =  ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) ) | 
						
							| 10 |  | fvoveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) )  =  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 )  =  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) | 
						
							| 12 | 9 11 | oveq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) )  =  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑁 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  =  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) )  =  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑥  =  𝐴  →  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) | 
						
							| 17 | 12 16 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) )  ↔  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴 𝐺 𝑦 )  =  ( 𝐴 𝐺 𝐵 ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) )  =  ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 )  =  ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴 𝑀 𝑦 )  =  ( 𝐴 𝑀 𝐵 ) ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  =  ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 )  =  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) | 
						
							| 24 | 20 23 | oveq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) )  =  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑁 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝐵 ) ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 )  =  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) )  =  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( 𝑦  =  𝐵  →  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) | 
						
							| 29 | 24 28 | eqeq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) )  ↔  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) | 
						
							| 30 | 17 29 | rspc2v | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) )  →  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) | 
						
							| 31 | 30 | 3adant1 | ⊢ ( ( 𝑈  ∈  CPreHilOLD  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) )  →  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) | 
						
							| 32 | 7 31 | mpd | ⊢ ( ( 𝑈  ∈  CPreHilOLD  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |