Step |
Hyp |
Ref |
Expression |
1 |
|
minveco.x |
|- X = ( BaseSet ` U ) |
2 |
|
minveco.m |
|- M = ( -v ` U ) |
3 |
|
minveco.n |
|- N = ( normCV ` U ) |
4 |
|
minveco.y |
|- Y = ( BaseSet ` W ) |
5 |
|
minveco.u |
|- ( ph -> U e. CPreHilOLD ) |
6 |
|
minveco.w |
|- ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
7 |
|
minveco.a |
|- ( ph -> A e. X ) |
8 |
|
minveco.d |
|- D = ( IndMet ` U ) |
9 |
|
minveco.j |
|- J = ( MetOpen ` D ) |
10 |
|
minveco.r |
|- R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) |
11 |
|
minveco.s |
|- S = inf ( R , RR , < ) |
12 |
|
minveco.f |
|- ( ph -> F : NN --> Y ) |
13 |
|
minveco.1 |
|- ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
14 |
|
4re |
|- 4 e. RR |
15 |
|
4pos |
|- 0 < 4 |
16 |
14 15
|
elrpii |
|- 4 e. RR+ |
17 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
18 |
|
2z |
|- 2 e. ZZ |
19 |
|
rpexpcl |
|- ( ( x e. RR+ /\ 2 e. ZZ ) -> ( x ^ 2 ) e. RR+ ) |
20 |
17 18 19
|
sylancl |
|- ( ( ph /\ x e. RR+ ) -> ( x ^ 2 ) e. RR+ ) |
21 |
|
rpdivcl |
|- ( ( 4 e. RR+ /\ ( x ^ 2 ) e. RR+ ) -> ( 4 / ( x ^ 2 ) ) e. RR+ ) |
22 |
16 20 21
|
sylancr |
|- ( ( ph /\ x e. RR+ ) -> ( 4 / ( x ^ 2 ) ) e. RR+ ) |
23 |
|
rprege0 |
|- ( ( 4 / ( x ^ 2 ) ) e. RR+ -> ( ( 4 / ( x ^ 2 ) ) e. RR /\ 0 <_ ( 4 / ( x ^ 2 ) ) ) ) |
24 |
|
flge0nn0 |
|- ( ( ( 4 / ( x ^ 2 ) ) e. RR /\ 0 <_ ( 4 / ( x ^ 2 ) ) ) -> ( |_ ` ( 4 / ( x ^ 2 ) ) ) e. NN0 ) |
25 |
|
nn0p1nn |
|- ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) e. NN0 -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN ) |
26 |
22 23 24 25
|
4syl |
|- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN ) |
27 |
|
phnv |
|- ( U e. CPreHilOLD -> U e. NrmCVec ) |
28 |
1 8
|
imsmet |
|- ( U e. NrmCVec -> D e. ( Met ` X ) ) |
29 |
5 27 28
|
3syl |
|- ( ph -> D e. ( Met ` X ) ) |
30 |
29
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> D e. ( Met ` X ) ) |
31 |
5 27
|
syl |
|- ( ph -> U e. NrmCVec ) |
32 |
|
inss1 |
|- ( ( SubSp ` U ) i^i CBan ) C_ ( SubSp ` U ) |
33 |
32 6
|
sselid |
|- ( ph -> W e. ( SubSp ` U ) ) |
34 |
|
eqid |
|- ( SubSp ` U ) = ( SubSp ` U ) |
35 |
1 4 34
|
sspba |
|- ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> Y C_ X ) |
36 |
31 33 35
|
syl2anc |
|- ( ph -> Y C_ X ) |
37 |
36
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> Y C_ X ) |
38 |
12
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> F : NN --> Y ) |
39 |
26
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN ) |
40 |
38 39
|
ffvelrnd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. Y ) |
41 |
37 40
|
sseldd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. X ) |
42 |
|
eluznn |
|- ( ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> n e. NN ) |
43 |
26 42
|
sylan |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> n e. NN ) |
44 |
38 43
|
ffvelrnd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` n ) e. Y ) |
45 |
37 44
|
sseldd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` n ) e. X ) |
46 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. X /\ ( F ` n ) e. X ) -> ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) e. RR ) |
47 |
30 41 45 46
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) e. RR ) |
48 |
47
|
resqcld |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) e. RR ) |
49 |
39
|
nnrpd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. RR+ ) |
50 |
49
|
rpreccld |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR+ ) |
51 |
|
rpmulcl |
|- ( ( 4 e. RR+ /\ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR+ ) -> ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) e. RR+ ) |
52 |
16 50 51
|
sylancr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) e. RR+ ) |
53 |
52
|
rpred |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) e. RR ) |
54 |
20
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( x ^ 2 ) e. RR+ ) |
55 |
54
|
rpred |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( x ^ 2 ) e. RR ) |
56 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> U e. CPreHilOLD ) |
57 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
58 |
7
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> A e. X ) |
59 |
26
|
nnrpd |
|- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. RR+ ) |
60 |
59
|
rpreccld |
|- ( ( ph /\ x e. RR+ ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR+ ) |
61 |
60
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR+ ) |
62 |
61
|
rpred |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR ) |
63 |
61
|
rpge0d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> 0 <_ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) |
64 |
12
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> F : NN --> Y ) |
65 |
64
|
ffvelrnda |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. NN ) -> ( F ` n ) e. Y ) |
66 |
43 65
|
syldan |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` n ) e. Y ) |
67 |
|
fveq2 |
|- ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( F ` n ) = ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) |
68 |
67
|
oveq2d |
|- ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( A D ( F ` n ) ) = ( A D ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
69 |
68
|
oveq1d |
|- ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( A D ( F ` n ) ) ^ 2 ) = ( ( A D ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ^ 2 ) ) |
70 |
|
oveq2 |
|- ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( 1 / n ) = ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) |
71 |
70
|
oveq2d |
|- ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( S ^ 2 ) + ( 1 / n ) ) = ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
72 |
69 71
|
breq12d |
|- ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) <-> ( ( A D ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) ) |
73 |
13
|
ralrimiva |
|- ( ph -> A. n e. NN ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
74 |
73
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> A. n e. NN ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
75 |
72 74 39
|
rspcdva |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( A D ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
76 |
37 66
|
sseldd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` n ) e. X ) |
77 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ A e. X /\ ( F ` n ) e. X ) -> ( A D ( F ` n ) ) e. RR ) |
78 |
30 58 76 77
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( A D ( F ` n ) ) e. RR ) |
79 |
78
|
resqcld |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) e. RR ) |
80 |
1 2 3 4 5 6 7 8 9 10
|
minvecolem1 |
|- ( ph -> ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) ) |
81 |
|
0re |
|- 0 e. RR |
82 |
|
breq1 |
|- ( x = 0 -> ( x <_ w <-> 0 <_ w ) ) |
83 |
82
|
ralbidv |
|- ( x = 0 -> ( A. w e. R x <_ w <-> A. w e. R 0 <_ w ) ) |
84 |
83
|
rspcev |
|- ( ( 0 e. RR /\ A. w e. R 0 <_ w ) -> E. x e. RR A. w e. R x <_ w ) |
85 |
81 84
|
mpan |
|- ( A. w e. R 0 <_ w -> E. x e. RR A. w e. R x <_ w ) |
86 |
85
|
3anim3i |
|- ( ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) -> ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) ) |
87 |
|
infrecl |
|- ( ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) -> inf ( R , RR , < ) e. RR ) |
88 |
80 86 87
|
3syl |
|- ( ph -> inf ( R , RR , < ) e. RR ) |
89 |
11 88
|
eqeltrid |
|- ( ph -> S e. RR ) |
90 |
89
|
resqcld |
|- ( ph -> ( S ^ 2 ) e. RR ) |
91 |
90
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( S ^ 2 ) e. RR ) |
92 |
43
|
nnrecred |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / n ) e. RR ) |
93 |
91 92
|
readdcld |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / n ) ) e. RR ) |
94 |
91 62
|
readdcld |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) e. RR ) |
95 |
13
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
96 |
43 95
|
syldan |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
97 |
|
eluzle |
|- ( n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) <_ n ) |
98 |
97
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) <_ n ) |
99 |
49
|
rpregt0d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) |
100 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
101 |
|
nngt0 |
|- ( n e. NN -> 0 < n ) |
102 |
100 101
|
jca |
|- ( n e. NN -> ( n e. RR /\ 0 < n ) ) |
103 |
43 102
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( n e. RR /\ 0 < n ) ) |
104 |
|
lerec |
|- ( ( ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) /\ ( n e. RR /\ 0 < n ) ) -> ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) <_ n <-> ( 1 / n ) <_ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
105 |
99 103 104
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) <_ n <-> ( 1 / n ) <_ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
106 |
98 105
|
mpbid |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / n ) <_ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) |
107 |
92 62 91 106
|
leadd2dd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / n ) ) <_ ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
108 |
79 93 94 96 107
|
letrd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
109 |
1 2 3 4 56 57 58 8 9 10 11 62 63 40 66 75 108
|
minvecolem2 |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) <_ ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
110 |
|
rpdivcl |
|- ( ( ( x ^ 2 ) e. RR+ /\ 4 e. RR+ ) -> ( ( x ^ 2 ) / 4 ) e. RR+ ) |
111 |
54 16 110
|
sylancl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( x ^ 2 ) / 4 ) e. RR+ ) |
112 |
|
rpcnne0 |
|- ( ( x ^ 2 ) e. RR+ -> ( ( x ^ 2 ) e. CC /\ ( x ^ 2 ) =/= 0 ) ) |
113 |
54 112
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( x ^ 2 ) e. CC /\ ( x ^ 2 ) =/= 0 ) ) |
114 |
|
rpcnne0 |
|- ( 4 e. RR+ -> ( 4 e. CC /\ 4 =/= 0 ) ) |
115 |
16 114
|
ax-mp |
|- ( 4 e. CC /\ 4 =/= 0 ) |
116 |
|
recdiv |
|- ( ( ( ( x ^ 2 ) e. CC /\ ( x ^ 2 ) =/= 0 ) /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( 1 / ( ( x ^ 2 ) / 4 ) ) = ( 4 / ( x ^ 2 ) ) ) |
117 |
113 115 116
|
sylancl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( x ^ 2 ) / 4 ) ) = ( 4 / ( x ^ 2 ) ) ) |
118 |
22
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 / ( x ^ 2 ) ) e. RR+ ) |
119 |
118
|
rpred |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 / ( x ^ 2 ) ) e. RR ) |
120 |
|
flltp1 |
|- ( ( 4 / ( x ^ 2 ) ) e. RR -> ( 4 / ( x ^ 2 ) ) < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) |
121 |
119 120
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 / ( x ^ 2 ) ) < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) |
122 |
117 121
|
eqbrtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( x ^ 2 ) / 4 ) ) < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) |
123 |
111 49 122
|
ltrec1d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) < ( ( x ^ 2 ) / 4 ) ) |
124 |
14 15
|
pm3.2i |
|- ( 4 e. RR /\ 0 < 4 ) |
125 |
|
ltmuldiv2 |
|- ( ( ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR /\ ( x ^ 2 ) e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) < ( x ^ 2 ) <-> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) < ( ( x ^ 2 ) / 4 ) ) ) |
126 |
124 125
|
mp3an3 |
|- ( ( ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR /\ ( x ^ 2 ) e. RR ) -> ( ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) < ( x ^ 2 ) <-> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) < ( ( x ^ 2 ) / 4 ) ) ) |
127 |
62 55 126
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) < ( x ^ 2 ) <-> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) < ( ( x ^ 2 ) / 4 ) ) ) |
128 |
123 127
|
mpbird |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) < ( x ^ 2 ) ) |
129 |
48 53 55 109 128
|
lelttrd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) < ( x ^ 2 ) ) |
130 |
|
metge0 |
|- ( ( D e. ( Met ` X ) /\ ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. X /\ ( F ` n ) e. X ) -> 0 <_ ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ) |
131 |
30 41 45 130
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> 0 <_ ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ) |
132 |
|
rprege0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) |
133 |
132
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( x e. RR /\ 0 <_ x ) ) |
134 |
|
lt2sq |
|- ( ( ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) e. RR /\ 0 <_ ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ) /\ ( x e. RR /\ 0 <_ x ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x <-> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) < ( x ^ 2 ) ) ) |
135 |
47 131 133 134
|
syl21anc |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x <-> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) < ( x ^ 2 ) ) ) |
136 |
129 135
|
mpbird |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) |
137 |
136
|
ralrimiva |
|- ( ( ph /\ x e. RR+ ) -> A. n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) |
138 |
|
fveq2 |
|- ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) |
139 |
|
fveq2 |
|- ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( F ` j ) = ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) |
140 |
139
|
oveq1d |
|- ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( F ` j ) D ( F ` n ) ) = ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ) |
141 |
140
|
breq1d |
|- ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( ( F ` j ) D ( F ` n ) ) < x <-> ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) ) |
142 |
138 141
|
raleqbidv |
|- ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x <-> A. n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) ) |
143 |
142
|
rspcev |
|- ( ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN /\ A. n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) -> E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) |
144 |
26 137 143
|
syl2anc |
|- ( ( ph /\ x e. RR+ ) -> E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) |
145 |
144
|
ralrimiva |
|- ( ph -> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) |
146 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
147 |
1 8
|
imsxmet |
|- ( U e. NrmCVec -> D e. ( *Met ` X ) ) |
148 |
5 27 147
|
3syl |
|- ( ph -> D e. ( *Met ` X ) ) |
149 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
150 |
|
eqidd |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( F ` n ) ) |
151 |
|
eqidd |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) = ( F ` j ) ) |
152 |
12 36
|
fssd |
|- ( ph -> F : NN --> X ) |
153 |
146 148 149 150 151 152
|
iscauf |
|- ( ph -> ( F e. ( Cau ` D ) <-> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) ) |
154 |
145 153
|
mpbird |
|- ( ph -> F e. ( Cau ` D ) ) |