Step |
Hyp |
Ref |
Expression |
1 |
|
minveco.x |
|- X = ( BaseSet ` U ) |
2 |
|
minveco.m |
|- M = ( -v ` U ) |
3 |
|
minveco.n |
|- N = ( normCV ` U ) |
4 |
|
minveco.y |
|- Y = ( BaseSet ` W ) |
5 |
|
minveco.u |
|- ( ph -> U e. CPreHilOLD ) |
6 |
|
minveco.w |
|- ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
7 |
|
minveco.a |
|- ( ph -> A e. X ) |
8 |
|
minveco.d |
|- D = ( IndMet ` U ) |
9 |
|
minveco.j |
|- J = ( MetOpen ` D ) |
10 |
|
minveco.r |
|- R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) |
11 |
|
minveco.s |
|- S = inf ( R , RR , < ) |
12 |
|
minveco.f |
|- ( ph -> F : NN --> Y ) |
13 |
|
minveco.1 |
|- ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
14 |
|
phnv |
|- ( U e. CPreHilOLD -> U e. NrmCVec ) |
15 |
5 14
|
syl |
|- ( ph -> U e. NrmCVec ) |
16 |
|
elin |
|- ( W e. ( ( SubSp ` U ) i^i CBan ) <-> ( W e. ( SubSp ` U ) /\ W e. CBan ) ) |
17 |
6 16
|
sylib |
|- ( ph -> ( W e. ( SubSp ` U ) /\ W e. CBan ) ) |
18 |
17
|
simpld |
|- ( ph -> W e. ( SubSp ` U ) ) |
19 |
|
eqid |
|- ( SubSp ` U ) = ( SubSp ` U ) |
20 |
1 4 19
|
sspba |
|- ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> Y C_ X ) |
21 |
15 18 20
|
syl2anc |
|- ( ph -> Y C_ X ) |
22 |
1 8
|
imsxmet |
|- ( U e. NrmCVec -> D e. ( *Met ` X ) ) |
23 |
15 22
|
syl |
|- ( ph -> D e. ( *Met ` X ) ) |
24 |
9
|
methaus |
|- ( D e. ( *Met ` X ) -> J e. Haus ) |
25 |
23 24
|
syl |
|- ( ph -> J e. Haus ) |
26 |
|
lmfun |
|- ( J e. Haus -> Fun ( ~~>t ` J ) ) |
27 |
25 26
|
syl |
|- ( ph -> Fun ( ~~>t ` J ) ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
minvecolem4a |
|- ( ph -> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) |
29 |
|
eqid |
|- ( J |`t Y ) = ( J |`t Y ) |
30 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
31 |
4
|
fvexi |
|- Y e. _V |
32 |
31
|
a1i |
|- ( ph -> Y e. _V ) |
33 |
9
|
mopntop |
|- ( D e. ( *Met ` X ) -> J e. Top ) |
34 |
23 33
|
syl |
|- ( ph -> J e. Top ) |
35 |
|
xmetres2 |
|- ( ( D e. ( *Met ` X ) /\ Y C_ X ) -> ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) ) |
36 |
23 21 35
|
syl2anc |
|- ( ph -> ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) ) |
37 |
|
eqid |
|- ( MetOpen ` ( D |` ( Y X. Y ) ) ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) |
38 |
37
|
mopntopon |
|- ( ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) -> ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) ) |
39 |
36 38
|
syl |
|- ( ph -> ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) ) |
40 |
|
lmcl |
|- ( ( ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) /\ F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) -> ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) e. Y ) |
41 |
39 28 40
|
syl2anc |
|- ( ph -> ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) e. Y ) |
42 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
43 |
29 30 32 34 41 42 12
|
lmss |
|- ( ph -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( J |`t Y ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
44 |
|
eqid |
|- ( D |` ( Y X. Y ) ) = ( D |` ( Y X. Y ) ) |
45 |
44 9 37
|
metrest |
|- ( ( D e. ( *Met ` X ) /\ Y C_ X ) -> ( J |`t Y ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) |
46 |
23 21 45
|
syl2anc |
|- ( ph -> ( J |`t Y ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) |
47 |
46
|
fveq2d |
|- ( ph -> ( ~~>t ` ( J |`t Y ) ) = ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ) |
48 |
47
|
breqd |
|- ( ph -> ( F ( ~~>t ` ( J |`t Y ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
49 |
43 48
|
bitrd |
|- ( ph -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
50 |
28 49
|
mpbird |
|- ( ph -> F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) |
51 |
|
funbrfv |
|- ( Fun ( ~~>t ` J ) -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) -> ( ( ~~>t ` J ) ` F ) = ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
52 |
27 50 51
|
sylc |
|- ( ph -> ( ( ~~>t ` J ) ` F ) = ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) |
53 |
52 41
|
eqeltrd |
|- ( ph -> ( ( ~~>t ` J ) ` F ) e. Y ) |
54 |
21 53
|
sseldd |
|- ( ph -> ( ( ~~>t ` J ) ` F ) e. X ) |