| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minveco.x |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | minveco.m |  |-  M = ( -v ` U ) | 
						
							| 3 |  | minveco.n |  |-  N = ( normCV ` U ) | 
						
							| 4 |  | minveco.y |  |-  Y = ( BaseSet ` W ) | 
						
							| 5 |  | minveco.u |  |-  ( ph -> U e. CPreHilOLD ) | 
						
							| 6 |  | minveco.w |  |-  ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) | 
						
							| 7 |  | minveco.a |  |-  ( ph -> A e. X ) | 
						
							| 8 |  | minveco.d |  |-  D = ( IndMet ` U ) | 
						
							| 9 |  | minveco.j |  |-  J = ( MetOpen ` D ) | 
						
							| 10 |  | minveco.r |  |-  R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) | 
						
							| 11 |  | minveco.s |  |-  S = inf ( R , RR , < ) | 
						
							| 12 |  | minveco.f |  |-  ( ph -> F : NN --> Y ) | 
						
							| 13 |  | minveco.1 |  |-  ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) | 
						
							| 14 |  | phnv |  |-  ( U e. CPreHilOLD -> U e. NrmCVec ) | 
						
							| 15 | 5 14 | syl |  |-  ( ph -> U e. NrmCVec ) | 
						
							| 16 |  | elin |  |-  ( W e. ( ( SubSp ` U ) i^i CBan ) <-> ( W e. ( SubSp ` U ) /\ W e. CBan ) ) | 
						
							| 17 | 6 16 | sylib |  |-  ( ph -> ( W e. ( SubSp ` U ) /\ W e. CBan ) ) | 
						
							| 18 | 17 | simpld |  |-  ( ph -> W e. ( SubSp ` U ) ) | 
						
							| 19 |  | eqid |  |-  ( SubSp ` U ) = ( SubSp ` U ) | 
						
							| 20 | 1 4 19 | sspba |  |-  ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> Y C_ X ) | 
						
							| 21 | 15 18 20 | syl2anc |  |-  ( ph -> Y C_ X ) | 
						
							| 22 | 1 8 | imsxmet |  |-  ( U e. NrmCVec -> D e. ( *Met ` X ) ) | 
						
							| 23 | 15 22 | syl |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 24 | 9 | methaus |  |-  ( D e. ( *Met ` X ) -> J e. Haus ) | 
						
							| 25 | 23 24 | syl |  |-  ( ph -> J e. Haus ) | 
						
							| 26 |  | lmfun |  |-  ( J e. Haus -> Fun ( ~~>t ` J ) ) | 
						
							| 27 | 25 26 | syl |  |-  ( ph -> Fun ( ~~>t ` J ) ) | 
						
							| 28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4a |  |-  ( ph -> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) | 
						
							| 29 |  | eqid |  |-  ( J |`t Y ) = ( J |`t Y ) | 
						
							| 30 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 31 | 4 | fvexi |  |-  Y e. _V | 
						
							| 32 | 31 | a1i |  |-  ( ph -> Y e. _V ) | 
						
							| 33 | 9 | mopntop |  |-  ( D e. ( *Met ` X ) -> J e. Top ) | 
						
							| 34 | 23 33 | syl |  |-  ( ph -> J e. Top ) | 
						
							| 35 |  | xmetres2 |  |-  ( ( D e. ( *Met ` X ) /\ Y C_ X ) -> ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) ) | 
						
							| 36 | 23 21 35 | syl2anc |  |-  ( ph -> ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) ) | 
						
							| 37 |  | eqid |  |-  ( MetOpen ` ( D |` ( Y X. Y ) ) ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) | 
						
							| 38 | 37 | mopntopon |  |-  ( ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) -> ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) ) | 
						
							| 39 | 36 38 | syl |  |-  ( ph -> ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) ) | 
						
							| 40 |  | lmcl |  |-  ( ( ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) /\ F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) -> ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) e. Y ) | 
						
							| 41 | 39 28 40 | syl2anc |  |-  ( ph -> ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) e. Y ) | 
						
							| 42 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 43 | 29 30 32 34 41 42 12 | lmss |  |-  ( ph -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( J |`t Y ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) | 
						
							| 44 |  | eqid |  |-  ( D |` ( Y X. Y ) ) = ( D |` ( Y X. Y ) ) | 
						
							| 45 | 44 9 37 | metrest |  |-  ( ( D e. ( *Met ` X ) /\ Y C_ X ) -> ( J |`t Y ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) | 
						
							| 46 | 23 21 45 | syl2anc |  |-  ( ph -> ( J |`t Y ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) | 
						
							| 47 | 46 | fveq2d |  |-  ( ph -> ( ~~>t ` ( J |`t Y ) ) = ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ) | 
						
							| 48 | 47 | breqd |  |-  ( ph -> ( F ( ~~>t ` ( J |`t Y ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) | 
						
							| 49 | 43 48 | bitrd |  |-  ( ph -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) | 
						
							| 50 | 28 49 | mpbird |  |-  ( ph -> F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) | 
						
							| 51 |  | funbrfv |  |-  ( Fun ( ~~>t ` J ) -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) -> ( ( ~~>t ` J ) ` F ) = ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) | 
						
							| 52 | 27 50 51 | sylc |  |-  ( ph -> ( ( ~~>t ` J ) ` F ) = ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) | 
						
							| 53 | 52 41 | eqeltrd |  |-  ( ph -> ( ( ~~>t ` J ) ` F ) e. Y ) | 
						
							| 54 | 21 53 | sseldd |  |-  ( ph -> ( ( ~~>t ` J ) ` F ) e. X ) |