| Step |
Hyp |
Ref |
Expression |
| 1 |
|
minveco.x |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
minveco.m |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
| 3 |
|
minveco.n |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
| 4 |
|
minveco.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
| 5 |
|
minveco.u |
⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) |
| 6 |
|
minveco.w |
⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) |
| 7 |
|
minveco.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 8 |
|
minveco.d |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
| 9 |
|
minveco.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 10 |
|
minveco.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 11 |
|
minveco.s |
⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) |
| 12 |
|
nnrecgt0 |
⊢ ( 𝑛 ∈ ℕ → 0 < ( 1 / 𝑛 ) ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 < ( 1 / 𝑛 ) ) |
| 14 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 16 |
1 2 3 4 5 6 7 8 9 10
|
minvecolem1 |
⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 18 |
17
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑅 ⊆ ℝ ) |
| 19 |
17
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑅 ≠ ∅ ) |
| 20 |
|
0re |
⊢ 0 ∈ ℝ |
| 21 |
17
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) |
| 22 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤 ) ) |
| 23 |
22
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 24 |
23
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
| 25 |
20 21 24
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
| 26 |
|
infrecl |
⊢ ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) |
| 27 |
18 19 25 26
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) |
| 28 |
11 27
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑆 ∈ ℝ ) |
| 29 |
28
|
resqcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ↑ 2 ) ∈ ℝ ) |
| 30 |
15 29
|
ltaddposd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 < ( 1 / 𝑛 ) ↔ ( 𝑆 ↑ 2 ) < ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 31 |
13 30
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ↑ 2 ) < ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 32 |
29 15
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 33 |
28
|
sqge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( 𝑆 ↑ 2 ) ) |
| 34 |
29 15 33 13
|
addgegt0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 < ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 35 |
32 34
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ∈ ℝ+ ) |
| 36 |
35
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 37 |
|
resqrtth |
⊢ ( ( ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↑ 2 ) = ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 38 |
32 36 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↑ 2 ) = ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 39 |
31 38
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ↑ 2 ) < ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↑ 2 ) ) |
| 40 |
35
|
rpsqrtcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ∈ ℝ+ ) |
| 41 |
40
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ∈ ℝ ) |
| 42 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ∈ ℝ ) |
| 43 |
|
infregelb |
⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ 0 ∈ ℝ ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 44 |
18 19 25 42 43
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 45 |
21 44
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ inf ( 𝑅 , ℝ , < ) ) |
| 46 |
45 11
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ 𝑆 ) |
| 47 |
32 36
|
sqrtge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 48 |
28 41 46 47
|
lt2sqd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 < ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↔ ( 𝑆 ↑ 2 ) < ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↑ 2 ) ) ) |
| 49 |
39 48
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑆 < ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 50 |
28 41
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 < ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↔ ¬ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑆 ) ) |
| 51 |
49 50
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ¬ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑆 ) |
| 52 |
11
|
breq2i |
⊢ ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑆 ↔ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ inf ( 𝑅 , ℝ , < ) ) |
| 53 |
|
infregelb |
⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ∈ ℝ ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ) ) |
| 54 |
18 19 25 41 53
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ) ) |
| 55 |
52 54
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑆 ↔ ∀ 𝑤 ∈ 𝑅 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ) ) |
| 56 |
10
|
raleqi |
⊢ ( ∀ 𝑤 ∈ 𝑅 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ↔ ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ) |
| 57 |
|
fvex |
⊢ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V |
| 58 |
57
|
rgenw |
⊢ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V |
| 59 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 60 |
|
breq2 |
⊢ ( 𝑤 = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ↔ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 61 |
59 60
|
ralrnmptw |
⊢ ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 62 |
58 61
|
ax-mp |
⊢ ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 63 |
56 62
|
bitri |
⊢ ( ∀ 𝑤 ∈ 𝑅 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 64 |
55 63
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑆 ↔ ∀ 𝑦 ∈ 𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 65 |
51 64
|
mtbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ¬ ∀ 𝑦 ∈ 𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 66 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝑌 ¬ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ¬ ∀ 𝑦 ∈ 𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 67 |
65 66
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∃ 𝑦 ∈ 𝑌 ¬ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 68 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 69 |
|
phnv |
⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) |
| 70 |
5 69
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
| 71 |
70
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → 𝑈 ∈ NrmCVec ) |
| 72 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) |
| 73 |
|
inss1 |
⊢ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ⊆ ( SubSp ‘ 𝑈 ) |
| 74 |
73 6
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
| 75 |
|
eqid |
⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) |
| 76 |
1 4 75
|
sspba |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌 ⊆ 𝑋 ) |
| 77 |
70 74 76
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑌 ⊆ 𝑋 ) |
| 79 |
78
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) |
| 80 |
1 2
|
nvmcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) |
| 81 |
71 72 79 80
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) |
| 82 |
1 3
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ℝ ) |
| 83 |
71 81 82
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ℝ ) |
| 84 |
83
|
resqcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ∈ ℝ ) |
| 85 |
68 84
|
letrid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ∨ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 86 |
85
|
ord |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ¬ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 87 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ∈ ℝ ) |
| 88 |
47
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → 0 ≤ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 89 |
1 3
|
nvge0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 90 |
71 81 89
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 91 |
87 83 88 90
|
le2sqd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↑ 2 ) ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) ) |
| 92 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↑ 2 ) = ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 93 |
92
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↑ 2 ) ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ↔ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) ) |
| 94 |
91 93
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) ) |
| 95 |
94
|
notbid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ¬ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ¬ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) ) |
| 96 |
1 2 3 8
|
imsdval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 97 |
71 72 79 96
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 98 |
97
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) |
| 99 |
98
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ↔ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 100 |
86 95 99
|
3imtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ¬ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) → ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 101 |
100
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑦 ∈ 𝑌 ¬ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) → ∃ 𝑦 ∈ 𝑌 ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 102 |
67 101
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∃ 𝑦 ∈ 𝑌 ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 103 |
102
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝑌 ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 104 |
4
|
fvexi |
⊢ 𝑌 ∈ V |
| 105 |
|
nnenom |
⊢ ℕ ≈ ω |
| 106 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑛 ) → ( 𝐴 𝐷 𝑦 ) = ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ) |
| 107 |
106
|
oveq1d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) = ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ) |
| 108 |
107
|
breq1d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑛 ) → ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ↔ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 109 |
104 105 108
|
axcc4 |
⊢ ( ∀ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝑌 ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 110 |
103 109
|
syl |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 111 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) → 𝑈 ∈ CPreHilOLD ) |
| 112 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) |
| 113 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) → 𝐴 ∈ 𝑋 ) |
| 114 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) → 𝑓 : ℕ ⟶ 𝑌 ) |
| 115 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 116 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 117 |
116
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) = ( 𝐴 𝐷 ( 𝑓 ‘ 𝑘 ) ) ) |
| 118 |
117
|
oveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) = ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 119 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) |
| 120 |
119
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) = ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑘 ) ) ) |
| 121 |
118 120
|
breq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ↔ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑘 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑘 ) ) ) ) |
| 122 |
121
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑘 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑘 ) ) ) |
| 123 |
115 122
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑘 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑘 ) ) ) |
| 124 |
|
eqid |
⊢ ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) = ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) |
| 125 |
1 2 3 4 111 112 113 8 9 10 11 114 123 124
|
minvecolem4 |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 126 |
110 125
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |