| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minveco.x | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | minveco.m | ⊢ 𝑀  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | minveco.n | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | minveco.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 5 |  | minveco.u | ⊢ ( 𝜑  →  𝑈  ∈  CPreHilOLD ) | 
						
							| 6 |  | minveco.w | ⊢ ( 𝜑  →  𝑊  ∈  ( ( SubSp ‘ 𝑈 )  ∩  CBan ) ) | 
						
							| 7 |  | minveco.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minveco.d | ⊢ 𝐷  =  ( IndMet ‘ 𝑈 ) | 
						
							| 9 |  | minveco.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 10 |  | minveco.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 11 |  | minveco.s | ⊢ 𝑆  =  inf ( 𝑅 ,  ℝ ,   <  ) | 
						
							| 12 |  | phnv | ⊢ ( 𝑈  ∈  CPreHilOLD  →  𝑈  ∈  NrmCVec ) | 
						
							| 13 | 5 12 | syl | ⊢ ( 𝜑  →  𝑈  ∈  NrmCVec ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  𝑈  ∈  NrmCVec ) | 
						
							| 15 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  𝐴  ∈  𝑋 ) | 
						
							| 16 |  | inss1 | ⊢ ( ( SubSp ‘ 𝑈 )  ∩  CBan )  ⊆  ( SubSp ‘ 𝑈 ) | 
						
							| 17 | 16 6 | sselid | ⊢ ( 𝜑  →  𝑊  ∈  ( SubSp ‘ 𝑈 ) ) | 
						
							| 18 |  | eqid | ⊢ ( SubSp ‘ 𝑈 )  =  ( SubSp ‘ 𝑈 ) | 
						
							| 19 | 1 4 18 | sspba | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  ( SubSp ‘ 𝑈 ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 20 | 13 17 19 | syl2anc | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 21 | 20 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  𝑥  ∈  𝑋 ) | 
						
							| 22 | 1 2 3 8 | imsdval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝑥  ∈  𝑋 )  →  ( 𝐴 𝐷 𝑥 )  =  ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) | 
						
							| 23 | 14 15 21 22 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝐴 𝐷 𝑥 )  =  ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  =  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ↑ 2 ) ) | 
						
							| 25 | 1 2 3 4 5 6 7 8 9 10 | minvecolem1 | ⊢ ( 𝜑  →  ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 27 | 26 | simp1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  𝑅  ⊆  ℝ ) | 
						
							| 28 | 26 | simp2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  𝑅  ≠  ∅ ) | 
						
							| 29 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  0  ∈  ℝ ) | 
						
							| 30 | 26 | simp3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) | 
						
							| 31 |  | breq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ≤  𝑤  ↔  0  ≤  𝑤 ) ) | 
						
							| 32 | 31 | ralbidv | ⊢ ( 𝑥  =  0  →  ( ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 33 | 32 | rspcev | ⊢ ( ( 0  ∈  ℝ  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 ) | 
						
							| 34 | 29 30 33 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 ) | 
						
							| 35 |  | infrecl | ⊢ ( ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 )  →  inf ( 𝑅 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 36 | 27 28 34 35 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  inf ( 𝑅 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 37 | 11 36 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  𝑆  ∈  ℝ ) | 
						
							| 38 | 37 | resqcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝑆 ↑ 2 )  ∈  ℝ ) | 
						
							| 39 | 38 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝑆 ↑ 2 )  ∈  ℂ ) | 
						
							| 40 | 39 | addridd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( 𝑆 ↑ 2 )  +  0 )  =  ( 𝑆 ↑ 2 ) ) | 
						
							| 41 | 24 40 | breq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ↔  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ↑ 2 )  ≤  ( 𝑆 ↑ 2 ) ) ) | 
						
							| 42 | 1 2 | nvmcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝑥  ∈  𝑋 )  →  ( 𝐴 𝑀 𝑥 )  ∈  𝑋 ) | 
						
							| 43 | 14 15 21 42 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝐴 𝑀 𝑥 )  ∈  𝑋 ) | 
						
							| 44 | 1 3 | nvcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴 𝑀 𝑥 )  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ∈  ℝ ) | 
						
							| 45 | 14 43 44 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ∈  ℝ ) | 
						
							| 46 | 1 3 | nvge0 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴 𝑀 𝑥 )  ∈  𝑋 )  →  0  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) | 
						
							| 47 | 14 43 46 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  0  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) | 
						
							| 48 |  | infregelb | ⊢ ( ( ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 )  ∧  0  ∈  ℝ )  →  ( 0  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 49 | 27 28 34 29 48 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 0  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 50 | 30 49 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  0  ≤  inf ( 𝑅 ,  ℝ ,   <  ) ) | 
						
							| 51 | 50 11 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  0  ≤  𝑆 ) | 
						
							| 52 | 45 37 47 51 | le2sqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  𝑆  ↔  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ↑ 2 )  ≤  ( 𝑆 ↑ 2 ) ) ) | 
						
							| 53 | 11 | breq2i | ⊢ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  𝑆  ↔  ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  inf ( 𝑅 ,  ℝ ,   <  ) ) | 
						
							| 54 |  | infregelb | ⊢ ( ( ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 )  ∧  ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ∈  ℝ )  →  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  𝑤 ) ) | 
						
							| 55 | 27 28 34 45 54 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  𝑤 ) ) | 
						
							| 56 | 53 55 | bitrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  𝑆  ↔  ∀ 𝑤  ∈  𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  𝑤 ) ) | 
						
							| 57 | 41 52 56 | 3bitr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ↔  ∀ 𝑤  ∈  𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  𝑤 ) ) | 
						
							| 58 | 10 | raleqi | ⊢ ( ∀ 𝑤  ∈  𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  𝑤  ↔  ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  𝑤 ) | 
						
							| 59 |  | fvex | ⊢ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  V | 
						
							| 60 | 59 | rgenw | ⊢ ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  V | 
						
							| 61 |  | eqid | ⊢ ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 62 |  | breq2 | ⊢ ( 𝑤  =  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  →  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  𝑤  ↔  ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 63 | 61 62 | ralrnmptw | ⊢ ( ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∈  V  →  ( ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  𝑤  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 64 | 60 63 | ax-mp | ⊢ ( ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  𝑤  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 65 | 58 64 | bitri | ⊢ ( ∀ 𝑤  ∈  𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  𝑤  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 66 | 57 65 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |