| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minveco.x | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | minveco.m | ⊢ 𝑀  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | minveco.n | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | minveco.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 5 |  | minveco.u | ⊢ ( 𝜑  →  𝑈  ∈  CPreHilOLD ) | 
						
							| 6 |  | minveco.w | ⊢ ( 𝜑  →  𝑊  ∈  ( ( SubSp ‘ 𝑈 )  ∩  CBan ) ) | 
						
							| 7 |  | minveco.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minveco.d | ⊢ 𝐷  =  ( IndMet ‘ 𝑈 ) | 
						
							| 9 |  | minveco.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 10 |  | minveco.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 11 |  | minveco.s | ⊢ 𝑆  =  inf ( 𝑅 ,  ℝ ,   <  ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 11 | minvecolem5 | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 13 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  ∧  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ∧  ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 ) ) )  →  𝑈  ∈  CPreHilOLD ) | 
						
							| 14 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  ∧  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ∧  ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 ) ) )  →  𝑊  ∈  ( ( SubSp ‘ 𝑈 )  ∩  CBan ) ) | 
						
							| 15 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  ∧  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ∧  ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 ) ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 16 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 17 | 16 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  ∧  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ∧  ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 ) ) )  →  0  ∈  ℝ ) | 
						
							| 18 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 19 | 18 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  ∧  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ∧  ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 ) ) )  →  0  ≤  0 ) | 
						
							| 20 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  ∧  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ∧  ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 ) ) )  →  𝑥  ∈  𝑌 ) | 
						
							| 21 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  ∧  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ∧  ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 ) ) )  →  𝑤  ∈  𝑌 ) | 
						
							| 22 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  ∧  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ∧  ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 ) ) )  →  ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 ) ) | 
						
							| 23 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  ∧  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ∧  ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 ) ) )  →  ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 ) ) | 
						
							| 24 | 1 2 3 4 13 14 15 8 9 10 11 17 19 20 21 22 23 | minvecolem2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  ∧  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ∧  ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 ) ) )  →  ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  ≤  ( 4  ·  0 ) ) | 
						
							| 25 | 24 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ∧  ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 ) )  →  ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  ≤  ( 4  ·  0 ) ) ) | 
						
							| 26 | 1 2 3 4 5 6 7 8 9 10 11 | minvecolem6 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 27 | 26 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 28 | 1 2 3 4 5 6 7 8 9 10 11 | minvecolem6 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 29 | 28 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 30 | 27 29 | anbi12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ∧  ( ( 𝐴 𝐷 𝑤 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 ) )  ↔  ( ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∧  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) ) | 
						
							| 31 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 32 | 31 | mul01i | ⊢ ( 4  ·  0 )  =  0 | 
						
							| 33 | 32 | breq2i | ⊢ ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  ≤  ( 4  ·  0 )  ↔  ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  ≤  0 ) | 
						
							| 34 |  | phnv | ⊢ ( 𝑈  ∈  CPreHilOLD  →  𝑈  ∈  NrmCVec ) | 
						
							| 35 | 5 34 | syl | ⊢ ( 𝜑  →  𝑈  ∈  NrmCVec ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  𝑈  ∈  NrmCVec ) | 
						
							| 37 | 1 8 | imsmet | ⊢ ( 𝑈  ∈  NrmCVec  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 39 |  | inss1 | ⊢ ( ( SubSp ‘ 𝑈 )  ∩  CBan )  ⊆  ( SubSp ‘ 𝑈 ) | 
						
							| 40 | 39 6 | sselid | ⊢ ( 𝜑  →  𝑊  ∈  ( SubSp ‘ 𝑈 ) ) | 
						
							| 41 |  | eqid | ⊢ ( SubSp ‘ 𝑈 )  =  ( SubSp ‘ 𝑈 ) | 
						
							| 42 | 1 4 41 | sspba | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  ( SubSp ‘ 𝑈 ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 43 | 35 40 42 | syl2anc | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 45 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  𝑥  ∈  𝑌 ) | 
						
							| 46 | 44 45 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 47 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  𝑤  ∈  𝑌 ) | 
						
							| 48 | 44 47 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  𝑤  ∈  𝑋 ) | 
						
							| 49 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  𝑤  ∈  𝑋 )  →  ( 𝑥 𝐷 𝑤 )  ∈  ℝ ) | 
						
							| 50 | 38 46 48 49 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( 𝑥 𝐷 𝑤 )  ∈  ℝ ) | 
						
							| 51 | 50 | sqge0d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  0  ≤  ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ) | 
						
							| 52 | 51 | biantrud | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  ≤  0  ↔  ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  ≤  0  ∧  0  ≤  ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ) ) ) | 
						
							| 53 | 50 | resqcld | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 54 |  | letri3 | ⊢ ( ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  =  0  ↔  ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  ≤  0  ∧  0  ≤  ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ) ) ) | 
						
							| 55 | 53 16 54 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  =  0  ↔  ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  ≤  0  ∧  0  ≤  ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ) ) ) | 
						
							| 56 | 50 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( 𝑥 𝐷 𝑤 )  ∈  ℂ ) | 
						
							| 57 |  | sqeq0 | ⊢ ( ( 𝑥 𝐷 𝑤 )  ∈  ℂ  →  ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  =  0  ↔  ( 𝑥 𝐷 𝑤 )  =  0 ) ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  =  0  ↔  ( 𝑥 𝐷 𝑤 )  =  0 ) ) | 
						
							| 59 |  | meteq0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  𝑤  ∈  𝑋 )  →  ( ( 𝑥 𝐷 𝑤 )  =  0  ↔  𝑥  =  𝑤 ) ) | 
						
							| 60 | 38 46 48 59 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( 𝑥 𝐷 𝑤 )  =  0  ↔  𝑥  =  𝑤 ) ) | 
						
							| 61 | 58 60 | bitrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  =  0  ↔  𝑥  =  𝑤 ) ) | 
						
							| 62 | 52 55 61 | 3bitr2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  ≤  0  ↔  𝑥  =  𝑤 ) ) | 
						
							| 63 | 33 62 | bitrid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 )  ≤  ( 4  ·  0 )  ↔  𝑥  =  𝑤 ) ) | 
						
							| 64 | 25 30 63 | 3imtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∧  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  →  𝑥  =  𝑤 ) ) | 
						
							| 65 | 64 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑌 ∀ 𝑤  ∈  𝑌 ( ( ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∧  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  →  𝑥  =  𝑤 ) ) | 
						
							| 66 |  | oveq2 | ⊢ ( 𝑥  =  𝑤  →  ( 𝐴 𝑀 𝑥 )  =  ( 𝐴 𝑀 𝑤 ) ) | 
						
							| 67 | 66 | fveq2d | ⊢ ( 𝑥  =  𝑤  →  ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  =  ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ) | 
						
							| 68 | 67 | breq1d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ↔  ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 69 | 68 | ralbidv | ⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | 
						
							| 70 | 69 | reu4 | ⊢ ( ∃! 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ↔  ( ∃ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∧  ∀ 𝑥  ∈  𝑌 ∀ 𝑤  ∈  𝑌 ( ( ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) )  ∧  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )  →  𝑥  =  𝑤 ) ) ) | 
						
							| 71 | 12 65 70 | sylanbrc | ⊢ ( 𝜑  →  ∃! 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |