| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minveco.x |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | minveco.m |  |-  M = ( -v ` U ) | 
						
							| 3 |  | minveco.n |  |-  N = ( normCV ` U ) | 
						
							| 4 |  | minveco.y |  |-  Y = ( BaseSet ` W ) | 
						
							| 5 |  | minveco.u |  |-  ( ph -> U e. CPreHilOLD ) | 
						
							| 6 |  | minveco.w |  |-  ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) | 
						
							| 7 |  | minveco.a |  |-  ( ph -> A e. X ) | 
						
							| 8 |  | minveco.d |  |-  D = ( IndMet ` U ) | 
						
							| 9 |  | minveco.j |  |-  J = ( MetOpen ` D ) | 
						
							| 10 |  | minveco.r |  |-  R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) | 
						
							| 11 |  | minveco.s |  |-  S = inf ( R , RR , < ) | 
						
							| 12 |  | minveco.f |  |-  ( ph -> F : NN --> Y ) | 
						
							| 13 |  | minveco.1 |  |-  ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) | 
						
							| 14 |  | minveco.t |  |-  T = ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) | 
						
							| 15 |  | phnv |  |-  ( U e. CPreHilOLD -> U e. NrmCVec ) | 
						
							| 16 | 1 8 | imsxmet |  |-  ( U e. NrmCVec -> D e. ( *Met ` X ) ) | 
						
							| 17 | 5 15 16 | 3syl |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 18 | 9 | methaus |  |-  ( D e. ( *Met ` X ) -> J e. Haus ) | 
						
							| 19 |  | lmfun |  |-  ( J e. Haus -> Fun ( ~~>t ` J ) ) | 
						
							| 20 | 17 18 19 | 3syl |  |-  ( ph -> Fun ( ~~>t ` J ) ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4a |  |-  ( ph -> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) | 
						
							| 22 |  | eqid |  |-  ( J |`t Y ) = ( J |`t Y ) | 
						
							| 23 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 24 | 4 | fvexi |  |-  Y e. _V | 
						
							| 25 | 24 | a1i |  |-  ( ph -> Y e. _V ) | 
						
							| 26 | 5 15 | syl |  |-  ( ph -> U e. NrmCVec ) | 
						
							| 27 | 9 | mopntop |  |-  ( D e. ( *Met ` X ) -> J e. Top ) | 
						
							| 28 | 26 16 27 | 3syl |  |-  ( ph -> J e. Top ) | 
						
							| 29 |  | elin |  |-  ( W e. ( ( SubSp ` U ) i^i CBan ) <-> ( W e. ( SubSp ` U ) /\ W e. CBan ) ) | 
						
							| 30 | 6 29 | sylib |  |-  ( ph -> ( W e. ( SubSp ` U ) /\ W e. CBan ) ) | 
						
							| 31 | 30 | simpld |  |-  ( ph -> W e. ( SubSp ` U ) ) | 
						
							| 32 |  | eqid |  |-  ( SubSp ` U ) = ( SubSp ` U ) | 
						
							| 33 | 1 4 32 | sspba |  |-  ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> Y C_ X ) | 
						
							| 34 | 26 31 33 | syl2anc |  |-  ( ph -> Y C_ X ) | 
						
							| 35 |  | xmetres2 |  |-  ( ( D e. ( *Met ` X ) /\ Y C_ X ) -> ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) ) | 
						
							| 36 | 17 34 35 | syl2anc |  |-  ( ph -> ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) ) | 
						
							| 37 |  | eqid |  |-  ( MetOpen ` ( D |` ( Y X. Y ) ) ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) | 
						
							| 38 | 37 | mopntopon |  |-  ( ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) -> ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) ) | 
						
							| 39 | 36 38 | syl |  |-  ( ph -> ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) ) | 
						
							| 40 |  | lmcl |  |-  ( ( ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) /\ F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) -> ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) e. Y ) | 
						
							| 41 | 39 21 40 | syl2anc |  |-  ( ph -> ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) e. Y ) | 
						
							| 42 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 43 | 22 23 25 28 41 42 12 | lmss |  |-  ( ph -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( J |`t Y ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) | 
						
							| 44 |  | eqid |  |-  ( D |` ( Y X. Y ) ) = ( D |` ( Y X. Y ) ) | 
						
							| 45 | 44 9 37 | metrest |  |-  ( ( D e. ( *Met ` X ) /\ Y C_ X ) -> ( J |`t Y ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) | 
						
							| 46 | 17 34 45 | syl2anc |  |-  ( ph -> ( J |`t Y ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) | 
						
							| 47 | 46 | fveq2d |  |-  ( ph -> ( ~~>t ` ( J |`t Y ) ) = ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ) | 
						
							| 48 | 47 | breqd |  |-  ( ph -> ( F ( ~~>t ` ( J |`t Y ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) | 
						
							| 49 | 43 48 | bitrd |  |-  ( ph -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) | 
						
							| 50 | 21 49 | mpbird |  |-  ( ph -> F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) | 
						
							| 51 |  | funbrfv |  |-  ( Fun ( ~~>t ` J ) -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) -> ( ( ~~>t ` J ) ` F ) = ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) | 
						
							| 52 | 20 50 51 | sylc |  |-  ( ph -> ( ( ~~>t ` J ) ` F ) = ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) | 
						
							| 53 | 52 41 | eqeltrd |  |-  ( ph -> ( ( ~~>t ` J ) ` F ) e. Y ) | 
						
							| 54 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4b |  |-  ( ph -> ( ( ~~>t ` J ) ` F ) e. X ) | 
						
							| 55 | 1 2 3 8 | imsdval |  |-  ( ( U e. NrmCVec /\ A e. X /\ ( ( ~~>t ` J ) ` F ) e. X ) -> ( A D ( ( ~~>t ` J ) ` F ) ) = ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) ) | 
						
							| 56 | 26 7 54 55 | syl3anc |  |-  ( ph -> ( A D ( ( ~~>t ` J ) ` F ) ) = ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ph /\ y e. Y ) -> ( A D ( ( ~~>t ` J ) ` F ) ) = ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) ) | 
						
							| 58 | 1 8 | imsmet |  |-  ( U e. NrmCVec -> D e. ( Met ` X ) ) | 
						
							| 59 | 5 15 58 | 3syl |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 60 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ A e. X /\ ( ( ~~>t ` J ) ` F ) e. X ) -> ( A D ( ( ~~>t ` J ) ` F ) ) e. RR ) | 
						
							| 61 | 59 7 54 60 | syl3anc |  |-  ( ph -> ( A D ( ( ~~>t ` J ) ` F ) ) e. RR ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ph /\ y e. Y ) -> ( A D ( ( ~~>t ` J ) ` F ) ) e. RR ) | 
						
							| 63 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4c |  |-  ( ph -> S e. RR ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ph /\ y e. Y ) -> S e. RR ) | 
						
							| 65 | 26 | adantr |  |-  ( ( ph /\ y e. Y ) -> U e. NrmCVec ) | 
						
							| 66 | 7 | adantr |  |-  ( ( ph /\ y e. Y ) -> A e. X ) | 
						
							| 67 | 34 | sselda |  |-  ( ( ph /\ y e. Y ) -> y e. X ) | 
						
							| 68 | 1 2 | nvmcl |  |-  ( ( U e. NrmCVec /\ A e. X /\ y e. X ) -> ( A M y ) e. X ) | 
						
							| 69 | 65 66 67 68 | syl3anc |  |-  ( ( ph /\ y e. Y ) -> ( A M y ) e. X ) | 
						
							| 70 | 1 3 | nvcl |  |-  ( ( U e. NrmCVec /\ ( A M y ) e. X ) -> ( N ` ( A M y ) ) e. RR ) | 
						
							| 71 | 65 69 70 | syl2anc |  |-  ( ( ph /\ y e. Y ) -> ( N ` ( A M y ) ) e. RR ) | 
						
							| 72 | 63 61 | ltnled |  |-  ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) <-> -. ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) ) | 
						
							| 73 |  | eqid |  |-  ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) = ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) | 
						
							| 74 | 17 | adantr |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> D e. ( *Met ` X ) ) | 
						
							| 75 | 61 63 | readdcld |  |-  ( ph -> ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR ) | 
						
							| 76 | 75 | rehalfcld |  |-  ( ph -> ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) e. RR ) | 
						
							| 77 | 76 | resqcld |  |-  ( ph -> ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) e. RR ) | 
						
							| 78 | 63 | resqcld |  |-  ( ph -> ( S ^ 2 ) e. RR ) | 
						
							| 79 | 77 78 | resubcld |  |-  ( ph -> ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR ) | 
						
							| 81 | 63 61 63 | ltadd1d |  |-  ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) <-> ( S + S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) ) | 
						
							| 82 | 63 | recnd |  |-  ( ph -> S e. CC ) | 
						
							| 83 | 82 | 2timesd |  |-  ( ph -> ( 2 x. S ) = ( S + S ) ) | 
						
							| 84 | 83 | breq1d |  |-  ( ph -> ( ( 2 x. S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( S + S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) ) | 
						
							| 85 |  | 2re |  |-  2 e. RR | 
						
							| 86 |  | 2pos |  |-  0 < 2 | 
						
							| 87 | 85 86 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 88 | 87 | a1i |  |-  ( ph -> ( 2 e. RR /\ 0 < 2 ) ) | 
						
							| 89 |  | ltmuldiv2 |  |-  ( ( S e. RR /\ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> S < ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) | 
						
							| 90 | 63 75 88 89 | syl3anc |  |-  ( ph -> ( ( 2 x. S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> S < ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) | 
						
							| 91 | 81 84 90 | 3bitr2d |  |-  ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) <-> S < ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) | 
						
							| 92 | 1 2 3 4 5 6 7 8 9 10 | minvecolem1 |  |-  ( ph -> ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) ) | 
						
							| 93 | 92 | simp3d |  |-  ( ph -> A. w e. R 0 <_ w ) | 
						
							| 94 | 92 | simp1d |  |-  ( ph -> R C_ RR ) | 
						
							| 95 | 92 | simp2d |  |-  ( ph -> R =/= (/) ) | 
						
							| 96 |  | 0re |  |-  0 e. RR | 
						
							| 97 |  | breq1 |  |-  ( x = 0 -> ( x <_ w <-> 0 <_ w ) ) | 
						
							| 98 | 97 | ralbidv |  |-  ( x = 0 -> ( A. w e. R x <_ w <-> A. w e. R 0 <_ w ) ) | 
						
							| 99 | 98 | rspcev |  |-  ( ( 0 e. RR /\ A. w e. R 0 <_ w ) -> E. x e. RR A. w e. R x <_ w ) | 
						
							| 100 | 96 93 99 | sylancr |  |-  ( ph -> E. x e. RR A. w e. R x <_ w ) | 
						
							| 101 | 96 | a1i |  |-  ( ph -> 0 e. RR ) | 
						
							| 102 |  | infregelb |  |-  ( ( ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) /\ 0 e. RR ) -> ( 0 <_ inf ( R , RR , < ) <-> A. w e. R 0 <_ w ) ) | 
						
							| 103 | 94 95 100 101 102 | syl31anc |  |-  ( ph -> ( 0 <_ inf ( R , RR , < ) <-> A. w e. R 0 <_ w ) ) | 
						
							| 104 | 93 103 | mpbird |  |-  ( ph -> 0 <_ inf ( R , RR , < ) ) | 
						
							| 105 | 104 11 | breqtrrdi |  |-  ( ph -> 0 <_ S ) | 
						
							| 106 |  | metge0 |  |-  ( ( D e. ( Met ` X ) /\ A e. X /\ ( ( ~~>t ` J ) ` F ) e. X ) -> 0 <_ ( A D ( ( ~~>t ` J ) ` F ) ) ) | 
						
							| 107 | 59 7 54 106 | syl3anc |  |-  ( ph -> 0 <_ ( A D ( ( ~~>t ` J ) ` F ) ) ) | 
						
							| 108 | 61 63 107 105 | addge0d |  |-  ( ph -> 0 <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) | 
						
							| 109 |  | divge0 |  |-  ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR /\ 0 <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) | 
						
							| 110 | 75 108 88 109 | syl21anc |  |-  ( ph -> 0 <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) | 
						
							| 111 | 63 76 105 110 | lt2sqd |  |-  ( ph -> ( S < ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) <-> ( S ^ 2 ) < ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) ) ) | 
						
							| 112 | 78 77 | posdifd |  |-  ( ph -> ( ( S ^ 2 ) < ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) <-> 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) | 
						
							| 113 | 91 111 112 | 3bitrd |  |-  ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) <-> 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) | 
						
							| 114 | 113 | biimpa |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) | 
						
							| 115 | 80 114 | elrpd |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR+ ) | 
						
							| 116 | 115 | rpreccld |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) e. RR+ ) | 
						
							| 117 | 14 116 | eqeltrid |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> T e. RR+ ) | 
						
							| 118 | 117 | rprege0d |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( T e. RR /\ 0 <_ T ) ) | 
						
							| 119 |  | flge0nn0 |  |-  ( ( T e. RR /\ 0 <_ T ) -> ( |_ ` T ) e. NN0 ) | 
						
							| 120 |  | nn0p1nn |  |-  ( ( |_ ` T ) e. NN0 -> ( ( |_ ` T ) + 1 ) e. NN ) | 
						
							| 121 | 118 119 120 | 3syl |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( |_ ` T ) + 1 ) e. NN ) | 
						
							| 122 | 121 | nnzd |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( |_ ` T ) + 1 ) e. ZZ ) | 
						
							| 123 | 50 52 | breqtrrd |  |-  ( ph -> F ( ~~>t ` J ) ( ( ~~>t ` J ) ` F ) ) | 
						
							| 124 | 123 | adantr |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> F ( ~~>t ` J ) ( ( ~~>t ` J ) ` F ) ) | 
						
							| 125 | 7 | adantr |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> A e. X ) | 
						
							| 126 | 76 | adantr |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) e. RR ) | 
						
							| 127 | 126 | rexrd |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) e. RR* ) | 
						
							| 128 |  | simpll |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ph ) | 
						
							| 129 |  | eluznn |  |-  ( ( ( ( |_ ` T ) + 1 ) e. NN /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> n e. NN ) | 
						
							| 130 | 121 129 | sylan |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> n e. NN ) | 
						
							| 131 | 59 | adantr |  |-  ( ( ph /\ n e. NN ) -> D e. ( Met ` X ) ) | 
						
							| 132 | 7 | adantr |  |-  ( ( ph /\ n e. NN ) -> A e. X ) | 
						
							| 133 | 12 34 | fssd |  |-  ( ph -> F : NN --> X ) | 
						
							| 134 | 133 | ffvelcdmda |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) e. X ) | 
						
							| 135 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ A e. X /\ ( F ` n ) e. X ) -> ( A D ( F ` n ) ) e. RR ) | 
						
							| 136 | 131 132 134 135 | syl3anc |  |-  ( ( ph /\ n e. NN ) -> ( A D ( F ` n ) ) e. RR ) | 
						
							| 137 | 128 130 136 | syl2anc |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( A D ( F ` n ) ) e. RR ) | 
						
							| 138 | 137 | resqcld |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) e. RR ) | 
						
							| 139 | 63 | ad2antrr |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> S e. RR ) | 
						
							| 140 | 139 | resqcld |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( S ^ 2 ) e. RR ) | 
						
							| 141 | 130 | nnrecred |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( 1 / n ) e. RR ) | 
						
							| 142 | 140 141 | readdcld |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / n ) ) e. RR ) | 
						
							| 143 | 77 | ad2antrr |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) e. RR ) | 
						
							| 144 | 128 130 13 | syl2anc |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) | 
						
							| 145 | 117 | adantr |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> T e. RR+ ) | 
						
							| 146 | 145 | rpred |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> T e. RR ) | 
						
							| 147 |  | reflcl |  |-  ( T e. RR -> ( |_ ` T ) e. RR ) | 
						
							| 148 |  | peano2re |  |-  ( ( |_ ` T ) e. RR -> ( ( |_ ` T ) + 1 ) e. RR ) | 
						
							| 149 | 146 147 148 | 3syl |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( |_ ` T ) + 1 ) e. RR ) | 
						
							| 150 | 130 | nnred |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> n e. RR ) | 
						
							| 151 |  | fllep1 |  |-  ( T e. RR -> T <_ ( ( |_ ` T ) + 1 ) ) | 
						
							| 152 | 146 151 | syl |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> T <_ ( ( |_ ` T ) + 1 ) ) | 
						
							| 153 |  | eluzle |  |-  ( n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) -> ( ( |_ ` T ) + 1 ) <_ n ) | 
						
							| 154 | 153 | adantl |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( |_ ` T ) + 1 ) <_ n ) | 
						
							| 155 | 146 149 150 152 154 | letrd |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> T <_ n ) | 
						
							| 156 | 14 155 | eqbrtrrid |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) <_ n ) | 
						
							| 157 |  | 1red |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 1 e. RR ) | 
						
							| 158 | 79 | ad2antrr |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR ) | 
						
							| 159 | 114 | adantr |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) | 
						
							| 160 | 130 | nngt0d |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 0 < n ) | 
						
							| 161 |  | lediv23 |  |-  ( ( 1 e. RR /\ ( ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR /\ 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) /\ ( n e. RR /\ 0 < n ) ) -> ( ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) <_ n <-> ( 1 / n ) <_ ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) | 
						
							| 162 | 157 158 159 150 160 161 | syl122anc |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) <_ n <-> ( 1 / n ) <_ ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) | 
						
							| 163 | 156 162 | mpbid |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( 1 / n ) <_ ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) | 
						
							| 164 | 140 141 143 | leaddsub2d |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( ( S ^ 2 ) + ( 1 / n ) ) <_ ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) <-> ( 1 / n ) <_ ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) | 
						
							| 165 | 163 164 | mpbird |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / n ) ) <_ ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) ) | 
						
							| 166 | 138 142 143 144 165 | letrd |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) ) | 
						
							| 167 | 76 | ad2antrr |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) e. RR ) | 
						
							| 168 |  | metge0 |  |-  ( ( D e. ( Met ` X ) /\ A e. X /\ ( F ` n ) e. X ) -> 0 <_ ( A D ( F ` n ) ) ) | 
						
							| 169 | 131 132 134 168 | syl3anc |  |-  ( ( ph /\ n e. NN ) -> 0 <_ ( A D ( F ` n ) ) ) | 
						
							| 170 | 128 130 169 | syl2anc |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 0 <_ ( A D ( F ` n ) ) ) | 
						
							| 171 | 110 | ad2antrr |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 0 <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) | 
						
							| 172 | 137 167 170 171 | le2sqd |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) <-> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) ) ) | 
						
							| 173 | 166 172 | mpbird |  |-  ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( A D ( F ` n ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) | 
						
							| 174 | 73 9 74 122 124 125 127 173 | lmle |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) | 
						
							| 175 | 61 63 61 | leadd2d |  |-  ( ph -> ( ( A D ( ( ~~>t ` J ) ` F ) ) <_ S <-> ( ( A D ( ( ~~>t ` J ) ` F ) ) + ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) ) | 
						
							| 176 | 61 | recnd |  |-  ( ph -> ( A D ( ( ~~>t ` J ) ` F ) ) e. CC ) | 
						
							| 177 | 176 | 2timesd |  |-  ( ph -> ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) = ( ( A D ( ( ~~>t ` J ) ` F ) ) + ( A D ( ( ~~>t ` J ) ` F ) ) ) ) | 
						
							| 178 | 177 | breq1d |  |-  ( ph -> ( ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( ( A D ( ( ~~>t ` J ) ` F ) ) + ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) ) | 
						
							| 179 |  | lemuldiv2 |  |-  ( ( ( A D ( ( ~~>t ` J ) ` F ) ) e. RR /\ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) | 
						
							| 180 | 87 179 | mp3an3 |  |-  ( ( ( A D ( ( ~~>t ` J ) ` F ) ) e. RR /\ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR ) -> ( ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) | 
						
							| 181 | 61 75 180 | syl2anc |  |-  ( ph -> ( ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) | 
						
							| 182 | 175 178 181 | 3bitr2d |  |-  ( ph -> ( ( A D ( ( ~~>t ` J ) ` F ) ) <_ S <-> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) | 
						
							| 183 | 182 | biimpar |  |-  ( ( ph /\ ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) | 
						
							| 184 | 174 183 | syldan |  |-  ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) | 
						
							| 185 | 184 | ex |  |-  ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) ) | 
						
							| 186 | 72 185 | sylbird |  |-  ( ph -> ( -. ( A D ( ( ~~>t ` J ) ` F ) ) <_ S -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) ) | 
						
							| 187 | 186 | pm2.18d |  |-  ( ph -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) | 
						
							| 188 | 187 | adantr |  |-  ( ( ph /\ y e. Y ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) | 
						
							| 189 | 94 | adantr |  |-  ( ( ph /\ y e. Y ) -> R C_ RR ) | 
						
							| 190 | 100 | adantr |  |-  ( ( ph /\ y e. Y ) -> E. x e. RR A. w e. R x <_ w ) | 
						
							| 191 |  | simpr |  |-  ( ( ph /\ y e. Y ) -> y e. Y ) | 
						
							| 192 |  | fvex |  |-  ( N ` ( A M y ) ) e. _V | 
						
							| 193 |  | eqid |  |-  ( y e. Y |-> ( N ` ( A M y ) ) ) = ( y e. Y |-> ( N ` ( A M y ) ) ) | 
						
							| 194 | 193 | elrnmpt1 |  |-  ( ( y e. Y /\ ( N ` ( A M y ) ) e. _V ) -> ( N ` ( A M y ) ) e. ran ( y e. Y |-> ( N ` ( A M y ) ) ) ) | 
						
							| 195 | 191 192 194 | sylancl |  |-  ( ( ph /\ y e. Y ) -> ( N ` ( A M y ) ) e. ran ( y e. Y |-> ( N ` ( A M y ) ) ) ) | 
						
							| 196 | 195 10 | eleqtrrdi |  |-  ( ( ph /\ y e. Y ) -> ( N ` ( A M y ) ) e. R ) | 
						
							| 197 |  | infrelb |  |-  ( ( R C_ RR /\ E. x e. RR A. w e. R x <_ w /\ ( N ` ( A M y ) ) e. R ) -> inf ( R , RR , < ) <_ ( N ` ( A M y ) ) ) | 
						
							| 198 | 189 190 196 197 | syl3anc |  |-  ( ( ph /\ y e. Y ) -> inf ( R , RR , < ) <_ ( N ` ( A M y ) ) ) | 
						
							| 199 | 11 198 | eqbrtrid |  |-  ( ( ph /\ y e. Y ) -> S <_ ( N ` ( A M y ) ) ) | 
						
							| 200 | 62 64 71 188 199 | letrd |  |-  ( ( ph /\ y e. Y ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( N ` ( A M y ) ) ) | 
						
							| 201 | 57 200 | eqbrtrrd |  |-  ( ( ph /\ y e. Y ) -> ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) | 
						
							| 202 | 201 | ralrimiva |  |-  ( ph -> A. y e. Y ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) | 
						
							| 203 |  | oveq2 |  |-  ( x = ( ( ~~>t ` J ) ` F ) -> ( A M x ) = ( A M ( ( ~~>t ` J ) ` F ) ) ) | 
						
							| 204 | 203 | fveq2d |  |-  ( x = ( ( ~~>t ` J ) ` F ) -> ( N ` ( A M x ) ) = ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) ) | 
						
							| 205 | 204 | breq1d |  |-  ( x = ( ( ~~>t ` J ) ` F ) -> ( ( N ` ( A M x ) ) <_ ( N ` ( A M y ) ) <-> ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) ) | 
						
							| 206 | 205 | ralbidv |  |-  ( x = ( ( ~~>t ` J ) ` F ) -> ( A. y e. Y ( N ` ( A M x ) ) <_ ( N ` ( A M y ) ) <-> A. y e. Y ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) ) | 
						
							| 207 | 206 | rspcev |  |-  ( ( ( ( ~~>t ` J ) ` F ) e. Y /\ A. y e. Y ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) -> E. x e. Y A. y e. Y ( N ` ( A M x ) ) <_ ( N ` ( A M y ) ) ) | 
						
							| 208 | 53 202 207 | syl2anc |  |-  ( ph -> E. x e. Y A. y e. Y ( N ` ( A M x ) ) <_ ( N ` ( A M y ) ) ) |