| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmle.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | lmle.3 |  |-  J = ( MetOpen ` D ) | 
						
							| 3 |  | lmle.4 |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 4 |  | lmle.6 |  |-  ( ph -> M e. ZZ ) | 
						
							| 5 |  | lmle.7 |  |-  ( ph -> F ( ~~>t ` J ) P ) | 
						
							| 6 |  | lmle.8 |  |-  ( ph -> Q e. X ) | 
						
							| 7 |  | lmle.9 |  |-  ( ph -> R e. RR* ) | 
						
							| 8 |  | lmle.10 |  |-  ( ( ph /\ k e. Z ) -> ( Q D ( F ` k ) ) <_ R ) | 
						
							| 9 | 2 | mopntopon |  |-  ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) | 
						
							| 10 | 3 9 | syl |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 11 |  | lmrel |  |-  Rel ( ~~>t ` J ) | 
						
							| 12 |  | releldm |  |-  ( ( Rel ( ~~>t ` J ) /\ F ( ~~>t ` J ) P ) -> F e. dom ( ~~>t ` J ) ) | 
						
							| 13 | 11 5 12 | sylancr |  |-  ( ph -> F e. dom ( ~~>t ` J ) ) | 
						
							| 14 | 1 10 4 13 | lmff |  |-  ( ph -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) | 
						
							| 15 |  | eqid |  |-  ( ZZ>= ` j ) = ( ZZ>= ` j ) | 
						
							| 16 | 10 | adantr |  |-  ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> J e. ( TopOn ` X ) ) | 
						
							| 17 |  | simprl |  |-  ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> j e. Z ) | 
						
							| 18 | 17 1 | eleqtrdi |  |-  ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> j e. ( ZZ>= ` M ) ) | 
						
							| 19 |  | eluzelz |  |-  ( j e. ( ZZ>= ` M ) -> j e. ZZ ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> j e. ZZ ) | 
						
							| 21 | 5 | adantr |  |-  ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> F ( ~~>t ` J ) P ) | 
						
							| 22 |  | oveq2 |  |-  ( x = ( F ` k ) -> ( Q D x ) = ( Q D ( F ` k ) ) ) | 
						
							| 23 | 22 | breq1d |  |-  ( x = ( F ` k ) -> ( ( Q D x ) <_ R <-> ( Q D ( F ` k ) ) <_ R ) ) | 
						
							| 24 |  | fvres |  |-  ( k e. ( ZZ>= ` j ) -> ( ( F |` ( ZZ>= ` j ) ) ` k ) = ( F ` k ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F |` ( ZZ>= ` j ) ) ` k ) = ( F ` k ) ) | 
						
							| 26 |  | simprr |  |-  ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) | 
						
							| 27 | 26 | ffvelcdmda |  |-  ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F |` ( ZZ>= ` j ) ) ` k ) e. X ) | 
						
							| 28 | 25 27 | eqeltrrd |  |-  ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. X ) | 
						
							| 29 | 1 | uztrn2 |  |-  ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) | 
						
							| 30 | 17 29 | sylan |  |-  ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) | 
						
							| 31 | 8 | adantlr |  |-  ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. Z ) -> ( Q D ( F ` k ) ) <_ R ) | 
						
							| 32 | 30 31 | syldan |  |-  ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( Q D ( F ` k ) ) <_ R ) | 
						
							| 33 | 23 28 32 | elrabd |  |-  ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. { x e. X | ( Q D x ) <_ R } ) | 
						
							| 34 |  | eqid |  |-  { x e. X | ( Q D x ) <_ R } = { x e. X | ( Q D x ) <_ R } | 
						
							| 35 | 2 34 | blcld |  |-  ( ( D e. ( *Met ` X ) /\ Q e. X /\ R e. RR* ) -> { x e. X | ( Q D x ) <_ R } e. ( Clsd ` J ) ) | 
						
							| 36 | 3 6 7 35 | syl3anc |  |-  ( ph -> { x e. X | ( Q D x ) <_ R } e. ( Clsd ` J ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> { x e. X | ( Q D x ) <_ R } e. ( Clsd ` J ) ) | 
						
							| 38 | 15 16 20 21 33 37 | lmcld |  |-  ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> P e. { x e. X | ( Q D x ) <_ R } ) | 
						
							| 39 | 14 38 | rexlimddv |  |-  ( ph -> P e. { x e. X | ( Q D x ) <_ R } ) | 
						
							| 40 |  | oveq2 |  |-  ( x = P -> ( Q D x ) = ( Q D P ) ) | 
						
							| 41 | 40 | breq1d |  |-  ( x = P -> ( ( Q D x ) <_ R <-> ( Q D P ) <_ R ) ) | 
						
							| 42 | 41 | elrab |  |-  ( P e. { x e. X | ( Q D x ) <_ R } <-> ( P e. X /\ ( Q D P ) <_ R ) ) | 
						
							| 43 | 42 | simprbi |  |-  ( P e. { x e. X | ( Q D x ) <_ R } -> ( Q D P ) <_ R ) | 
						
							| 44 | 39 43 | syl |  |-  ( ph -> ( Q D P ) <_ R ) |