| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nglmle.1 |
|- X = ( Base ` G ) |
| 2 |
|
nglmle.2 |
|- D = ( ( dist ` G ) |` ( X X. X ) ) |
| 3 |
|
nglmle.3 |
|- J = ( MetOpen ` D ) |
| 4 |
|
nglmle.5 |
|- N = ( norm ` G ) |
| 5 |
|
nglmle.6 |
|- ( ph -> G e. NrmGrp ) |
| 6 |
|
nglmle.7 |
|- ( ph -> F : NN --> X ) |
| 7 |
|
nglmle.8 |
|- ( ph -> F ( ~~>t ` J ) P ) |
| 8 |
|
nglmle.9 |
|- ( ph -> R e. RR* ) |
| 9 |
|
nglmle.10 |
|- ( ( ph /\ k e. NN ) -> ( N ` ( F ` k ) ) <_ R ) |
| 10 |
|
ngpgrp |
|- ( G e. NrmGrp -> G e. Grp ) |
| 11 |
5 10
|
syl |
|- ( ph -> G e. Grp ) |
| 12 |
|
ngpms |
|- ( G e. NrmGrp -> G e. MetSp ) |
| 13 |
5 12
|
syl |
|- ( ph -> G e. MetSp ) |
| 14 |
|
msxms |
|- ( G e. MetSp -> G e. *MetSp ) |
| 15 |
13 14
|
syl |
|- ( ph -> G e. *MetSp ) |
| 16 |
1 2
|
xmsxmet |
|- ( G e. *MetSp -> D e. ( *Met ` X ) ) |
| 17 |
15 16
|
syl |
|- ( ph -> D e. ( *Met ` X ) ) |
| 18 |
3
|
mopntopon |
|- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 19 |
17 18
|
syl |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 20 |
|
lmcl |
|- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) P ) -> P e. X ) |
| 21 |
19 7 20
|
syl2anc |
|- ( ph -> P e. X ) |
| 22 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 23 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 24 |
4 1 22 23 2
|
nmval2 |
|- ( ( G e. Grp /\ P e. X ) -> ( N ` P ) = ( P D ( 0g ` G ) ) ) |
| 25 |
11 21 24
|
syl2anc |
|- ( ph -> ( N ` P ) = ( P D ( 0g ` G ) ) ) |
| 26 |
1 22
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. X ) |
| 27 |
11 26
|
syl |
|- ( ph -> ( 0g ` G ) e. X ) |
| 28 |
|
xmetsym |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ ( 0g ` G ) e. X ) -> ( P D ( 0g ` G ) ) = ( ( 0g ` G ) D P ) ) |
| 29 |
17 21 27 28
|
syl3anc |
|- ( ph -> ( P D ( 0g ` G ) ) = ( ( 0g ` G ) D P ) ) |
| 30 |
25 29
|
eqtrd |
|- ( ph -> ( N ` P ) = ( ( 0g ` G ) D P ) ) |
| 31 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 32 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 33 |
11
|
adantr |
|- ( ( ph /\ k e. NN ) -> G e. Grp ) |
| 34 |
6
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. X ) |
| 35 |
4 1 22 23 2
|
nmval2 |
|- ( ( G e. Grp /\ ( F ` k ) e. X ) -> ( N ` ( F ` k ) ) = ( ( F ` k ) D ( 0g ` G ) ) ) |
| 36 |
33 34 35
|
syl2anc |
|- ( ( ph /\ k e. NN ) -> ( N ` ( F ` k ) ) = ( ( F ` k ) D ( 0g ` G ) ) ) |
| 37 |
17
|
adantr |
|- ( ( ph /\ k e. NN ) -> D e. ( *Met ` X ) ) |
| 38 |
27
|
adantr |
|- ( ( ph /\ k e. NN ) -> ( 0g ` G ) e. X ) |
| 39 |
|
xmetsym |
|- ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X /\ ( 0g ` G ) e. X ) -> ( ( F ` k ) D ( 0g ` G ) ) = ( ( 0g ` G ) D ( F ` k ) ) ) |
| 40 |
37 34 38 39
|
syl3anc |
|- ( ( ph /\ k e. NN ) -> ( ( F ` k ) D ( 0g ` G ) ) = ( ( 0g ` G ) D ( F ` k ) ) ) |
| 41 |
36 40
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( N ` ( F ` k ) ) = ( ( 0g ` G ) D ( F ` k ) ) ) |
| 42 |
41 9
|
eqbrtrrd |
|- ( ( ph /\ k e. NN ) -> ( ( 0g ` G ) D ( F ` k ) ) <_ R ) |
| 43 |
31 3 17 32 7 27 8 42
|
lmle |
|- ( ph -> ( ( 0g ` G ) D P ) <_ R ) |
| 44 |
30 43
|
eqbrtrd |
|- ( ph -> ( N ` P ) <_ R ) |