| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nglmle.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | nglmle.2 |  |-  D = ( ( dist ` G ) |` ( X X. X ) ) | 
						
							| 3 |  | nglmle.3 |  |-  J = ( MetOpen ` D ) | 
						
							| 4 |  | nglmle.5 |  |-  N = ( norm ` G ) | 
						
							| 5 |  | nglmle.6 |  |-  ( ph -> G e. NrmGrp ) | 
						
							| 6 |  | nglmle.7 |  |-  ( ph -> F : NN --> X ) | 
						
							| 7 |  | nglmle.8 |  |-  ( ph -> F ( ~~>t ` J ) P ) | 
						
							| 8 |  | nglmle.9 |  |-  ( ph -> R e. RR* ) | 
						
							| 9 |  | nglmle.10 |  |-  ( ( ph /\ k e. NN ) -> ( N ` ( F ` k ) ) <_ R ) | 
						
							| 10 |  | ngpgrp |  |-  ( G e. NrmGrp -> G e. Grp ) | 
						
							| 11 | 5 10 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 12 |  | ngpms |  |-  ( G e. NrmGrp -> G e. MetSp ) | 
						
							| 13 | 5 12 | syl |  |-  ( ph -> G e. MetSp ) | 
						
							| 14 |  | msxms |  |-  ( G e. MetSp -> G e. *MetSp ) | 
						
							| 15 | 13 14 | syl |  |-  ( ph -> G e. *MetSp ) | 
						
							| 16 | 1 2 | xmsxmet |  |-  ( G e. *MetSp -> D e. ( *Met ` X ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 18 | 3 | mopntopon |  |-  ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 20 |  | lmcl |  |-  ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) P ) -> P e. X ) | 
						
							| 21 | 19 7 20 | syl2anc |  |-  ( ph -> P e. X ) | 
						
							| 22 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 23 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 24 | 4 1 22 23 2 | nmval2 |  |-  ( ( G e. Grp /\ P e. X ) -> ( N ` P ) = ( P D ( 0g ` G ) ) ) | 
						
							| 25 | 11 21 24 | syl2anc |  |-  ( ph -> ( N ` P ) = ( P D ( 0g ` G ) ) ) | 
						
							| 26 | 1 22 | grpidcl |  |-  ( G e. Grp -> ( 0g ` G ) e. X ) | 
						
							| 27 | 11 26 | syl |  |-  ( ph -> ( 0g ` G ) e. X ) | 
						
							| 28 |  | xmetsym |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ ( 0g ` G ) e. X ) -> ( P D ( 0g ` G ) ) = ( ( 0g ` G ) D P ) ) | 
						
							| 29 | 17 21 27 28 | syl3anc |  |-  ( ph -> ( P D ( 0g ` G ) ) = ( ( 0g ` G ) D P ) ) | 
						
							| 30 | 25 29 | eqtrd |  |-  ( ph -> ( N ` P ) = ( ( 0g ` G ) D P ) ) | 
						
							| 31 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 32 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 33 | 11 | adantr |  |-  ( ( ph /\ k e. NN ) -> G e. Grp ) | 
						
							| 34 | 6 | ffvelcdmda |  |-  ( ( ph /\ k e. NN ) -> ( F ` k ) e. X ) | 
						
							| 35 | 4 1 22 23 2 | nmval2 |  |-  ( ( G e. Grp /\ ( F ` k ) e. X ) -> ( N ` ( F ` k ) ) = ( ( F ` k ) D ( 0g ` G ) ) ) | 
						
							| 36 | 33 34 35 | syl2anc |  |-  ( ( ph /\ k e. NN ) -> ( N ` ( F ` k ) ) = ( ( F ` k ) D ( 0g ` G ) ) ) | 
						
							| 37 | 17 | adantr |  |-  ( ( ph /\ k e. NN ) -> D e. ( *Met ` X ) ) | 
						
							| 38 | 27 | adantr |  |-  ( ( ph /\ k e. NN ) -> ( 0g ` G ) e. X ) | 
						
							| 39 |  | xmetsym |  |-  ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X /\ ( 0g ` G ) e. X ) -> ( ( F ` k ) D ( 0g ` G ) ) = ( ( 0g ` G ) D ( F ` k ) ) ) | 
						
							| 40 | 37 34 38 39 | syl3anc |  |-  ( ( ph /\ k e. NN ) -> ( ( F ` k ) D ( 0g ` G ) ) = ( ( 0g ` G ) D ( F ` k ) ) ) | 
						
							| 41 | 36 40 | eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( N ` ( F ` k ) ) = ( ( 0g ` G ) D ( F ` k ) ) ) | 
						
							| 42 | 41 9 | eqbrtrrd |  |-  ( ( ph /\ k e. NN ) -> ( ( 0g ` G ) D ( F ` k ) ) <_ R ) | 
						
							| 43 | 31 3 17 32 7 27 8 42 | lmle |  |-  ( ph -> ( ( 0g ` G ) D P ) <_ R ) | 
						
							| 44 | 30 43 | eqbrtrd |  |-  ( ph -> ( N ` P ) <_ R ) |