Metamath Proof Explorer


Theorem nglmle

Description: If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007) (Revised by AV, 16-Oct-2021)

Ref Expression
Hypotheses nglmle.1 X = Base G
nglmle.2 D = dist G X × X
nglmle.3 J = MetOpen D
nglmle.5 N = norm G
nglmle.6 φ G NrmGrp
nglmle.7 φ F : X
nglmle.8 φ F t J P
nglmle.9 φ R *
nglmle.10 φ k N F k R
Assertion nglmle φ N P R

Proof

Step Hyp Ref Expression
1 nglmle.1 X = Base G
2 nglmle.2 D = dist G X × X
3 nglmle.3 J = MetOpen D
4 nglmle.5 N = norm G
5 nglmle.6 φ G NrmGrp
6 nglmle.7 φ F : X
7 nglmle.8 φ F t J P
8 nglmle.9 φ R *
9 nglmle.10 φ k N F k R
10 ngpgrp G NrmGrp G Grp
11 5 10 syl φ G Grp
12 ngpms G NrmGrp G MetSp
13 5 12 syl φ G MetSp
14 msxms G MetSp G ∞MetSp
15 13 14 syl φ G ∞MetSp
16 1 2 xmsxmet G ∞MetSp D ∞Met X
17 15 16 syl φ D ∞Met X
18 3 mopntopon D ∞Met X J TopOn X
19 17 18 syl φ J TopOn X
20 lmcl J TopOn X F t J P P X
21 19 7 20 syl2anc φ P X
22 eqid 0 G = 0 G
23 eqid dist G = dist G
24 4 1 22 23 2 nmval2 G Grp P X N P = P D 0 G
25 11 21 24 syl2anc φ N P = P D 0 G
26 1 22 grpidcl G Grp 0 G X
27 11 26 syl φ 0 G X
28 xmetsym D ∞Met X P X 0 G X P D 0 G = 0 G D P
29 17 21 27 28 syl3anc φ P D 0 G = 0 G D P
30 25 29 eqtrd φ N P = 0 G D P
31 nnuz = 1
32 1zzd φ 1
33 11 adantr φ k G Grp
34 6 ffvelrnda φ k F k X
35 4 1 22 23 2 nmval2 G Grp F k X N F k = F k D 0 G
36 33 34 35 syl2anc φ k N F k = F k D 0 G
37 17 adantr φ k D ∞Met X
38 27 adantr φ k 0 G X
39 xmetsym D ∞Met X F k X 0 G X F k D 0 G = 0 G D F k
40 37 34 38 39 syl3anc φ k F k D 0 G = 0 G D F k
41 36 40 eqtrd φ k N F k = 0 G D F k
42 41 9 eqbrtrrd φ k 0 G D F k R
43 31 3 17 32 7 27 8 42 lmle φ 0 G D P R
44 30 43 eqbrtrd φ N P R