| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nglmle.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | nglmle.2 | ⊢ 𝐷  =  ( ( dist ‘ 𝐺 )  ↾  ( 𝑋  ×  𝑋 ) ) | 
						
							| 3 |  | nglmle.3 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 4 |  | nglmle.5 | ⊢ 𝑁  =  ( norm ‘ 𝐺 ) | 
						
							| 5 |  | nglmle.6 | ⊢ ( 𝜑  →  𝐺  ∈  NrmGrp ) | 
						
							| 6 |  | nglmle.7 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ 𝑋 ) | 
						
							| 7 |  | nglmle.8 | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | 
						
							| 8 |  | nglmle.9 | ⊢ ( 𝜑  →  𝑅  ∈  ℝ* ) | 
						
							| 9 |  | nglmle.10 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑁 ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑅 ) | 
						
							| 10 |  | ngpgrp | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  Grp ) | 
						
							| 11 | 5 10 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 12 |  | ngpms | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  MetSp ) | 
						
							| 13 | 5 12 | syl | ⊢ ( 𝜑  →  𝐺  ∈  MetSp ) | 
						
							| 14 |  | msxms | ⊢ ( 𝐺  ∈  MetSp  →  𝐺  ∈  ∞MetSp ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  𝐺  ∈  ∞MetSp ) | 
						
							| 16 | 1 2 | xmsxmet | ⊢ ( 𝐺  ∈  ∞MetSp  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 18 | 3 | mopntopon | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 20 |  | lmcl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  𝑃  ∈  𝑋 ) | 
						
							| 21 | 19 7 20 | syl2anc | ⊢ ( 𝜑  →  𝑃  ∈  𝑋 ) | 
						
							| 22 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 23 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 24 | 4 1 22 23 2 | nmval2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  𝑋 )  →  ( 𝑁 ‘ 𝑃 )  =  ( 𝑃 𝐷 ( 0g ‘ 𝐺 ) ) ) | 
						
							| 25 | 11 21 24 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑃 )  =  ( 𝑃 𝐷 ( 0g ‘ 𝐺 ) ) ) | 
						
							| 26 | 1 22 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 27 | 11 26 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 28 |  | xmetsym | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  ( 0g ‘ 𝐺 )  ∈  𝑋 )  →  ( 𝑃 𝐷 ( 0g ‘ 𝐺 ) )  =  ( ( 0g ‘ 𝐺 ) 𝐷 𝑃 ) ) | 
						
							| 29 | 17 21 27 28 | syl3anc | ⊢ ( 𝜑  →  ( 𝑃 𝐷 ( 0g ‘ 𝐺 ) )  =  ( ( 0g ‘ 𝐺 ) 𝐷 𝑃 ) ) | 
						
							| 30 | 25 29 | eqtrd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑃 )  =  ( ( 0g ‘ 𝐺 ) 𝐷 𝑃 ) ) | 
						
							| 31 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 32 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 33 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐺  ∈  Grp ) | 
						
							| 34 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 ) | 
						
							| 35 | 4 1 22 23 2 | nmval2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) | 
						
							| 36 | 33 34 35 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑁 ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) | 
						
							| 37 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 38 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 39 |  | xmetsym | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( 0g ‘ 𝐺 )  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 0g ‘ 𝐺 ) )  =  ( ( 0g ‘ 𝐺 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 40 | 37 34 38 39 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 0g ‘ 𝐺 ) )  =  ( ( 0g ‘ 𝐺 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 41 | 36 40 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑁 ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( ( 0g ‘ 𝐺 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 42 | 41 9 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 0g ‘ 𝐺 ) 𝐷 ( 𝐹 ‘ 𝑘 ) )  ≤  𝑅 ) | 
						
							| 43 | 31 3 17 32 7 27 8 42 | lmle | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝐺 ) 𝐷 𝑃 )  ≤  𝑅 ) | 
						
							| 44 | 30 43 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑃 )  ≤  𝑅 ) |