| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmclim.2 | ⊢ 𝐽  =  ( TopOpen ‘ ℂfld ) | 
						
							| 2 |  | lmclim.3 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | 3anass | ⊢ ( ( 𝐹  ∈  ( ℂ  ↑pm  ℂ )  ∧  𝑃  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 ) )  ↔  ( 𝐹  ∈  ( ℂ  ↑pm  ℂ )  ∧  ( 𝑃  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 ) ) ) ) | 
						
							| 4 | 2 | uztrn2 | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 5 |  | 3anass | ⊢ ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 )  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 ) ) ) | 
						
							| 6 |  | simplr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝑃  ∈  ℂ )  →  𝑍  ⊆  dom  𝐹 ) | 
						
							| 7 | 6 | sselda | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝑃  ∈  ℂ )  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  dom  𝐹 ) | 
						
							| 8 | 7 | biantrurd | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝑃  ∈  ℂ )  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 )  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 ) ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( abs  ∘   −  )  =  ( abs  ∘   −  ) | 
						
							| 10 | 9 | cnmetdval | ⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  𝑃  ∈  ℂ )  →  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) ) ) | 
						
							| 11 | 10 | ancoms | ⊢ ( ( 𝑃  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  →  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) ) ) | 
						
							| 12 | 11 | breq1d | ⊢ ( ( 𝑃  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  →  ( ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) | 
						
							| 13 | 12 | pm5.32da | ⊢ ( 𝑃  ∈  ℂ  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) ) | 
						
							| 14 | 13 | ad2antlr | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝑃  ∈  ℂ )  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) ) | 
						
							| 15 | 8 14 | bitr3d | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝑃  ∈  ℂ )  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 ) )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) ) | 
						
							| 16 | 5 15 | bitrid | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝑃  ∈  ℂ )  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) ) | 
						
							| 17 | 4 16 | sylan2 | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝑃  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) ) | 
						
							| 18 | 17 | anassrs | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝑃  ∈  ℂ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) ) | 
						
							| 19 | 18 | ralbidva | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝑃  ∈  ℂ )  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) ) | 
						
							| 20 | 19 | rexbidva | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝑃  ∈  ℂ )  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 )  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝑃  ∈  ℂ )  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) ) | 
						
							| 22 | 21 | pm5.32da | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  →  ( ( 𝑃  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 ) )  ↔  ( 𝑃  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) ) ) | 
						
							| 23 | 22 | anbi2d | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  →  ( ( 𝐹  ∈  ( ℂ  ↑pm  ℂ )  ∧  ( 𝑃  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 ) ) )  ↔  ( 𝐹  ∈  ( ℂ  ↑pm  ℂ )  ∧  ( 𝑃  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) ) ) ) | 
						
							| 24 | 3 23 | bitrid | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  →  ( ( 𝐹  ∈  ( ℂ  ↑pm  ℂ )  ∧  𝑃  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 ) )  ↔  ( 𝐹  ∈  ( ℂ  ↑pm  ℂ )  ∧  ( 𝑃  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) ) ) ) | 
						
							| 25 | 1 | cnfldtopn | ⊢ 𝐽  =  ( MetOpen ‘ ( abs  ∘   −  ) ) | 
						
							| 26 |  | cnxmet | ⊢ ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) | 
						
							| 27 | 26 | a1i | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  →  ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) ) | 
						
							| 28 |  | simpl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  →  𝑀  ∈  ℤ ) | 
						
							| 29 | 25 27 2 28 | lmmbr3 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝐹  ∈  ( ℂ  ↑pm  ℂ )  ∧  𝑃  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑘 ) ( abs  ∘   −  ) 𝑃 )  <  𝑥 ) ) ) ) | 
						
							| 30 |  | simpll | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝐹  ∈  ( ℂ  ↑pm  ℂ ) )  →  𝑀  ∈  ℤ ) | 
						
							| 31 |  | simpr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝐹  ∈  ( ℂ  ↑pm  ℂ ) )  →  𝐹  ∈  ( ℂ  ↑pm  ℂ ) ) | 
						
							| 32 |  | eqidd | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝐹  ∈  ( ℂ  ↑pm  ℂ ) )  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 33 | 2 30 31 32 | clim2 | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  ∧  𝐹  ∈  ( ℂ  ↑pm  ℂ ) )  →  ( 𝐹  ⇝  𝑃  ↔  ( 𝑃  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) ) ) | 
						
							| 34 | 33 | pm5.32da | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  →  ( ( 𝐹  ∈  ( ℂ  ↑pm  ℂ )  ∧  𝐹  ⇝  𝑃 )  ↔  ( 𝐹  ∈  ( ℂ  ↑pm  ℂ )  ∧  ( 𝑃  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑃 ) )  <  𝑥 ) ) ) ) ) | 
						
							| 35 | 24 29 34 | 3bitr4d | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑍  ⊆  dom  𝐹 )  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝐹  ∈  ( ℂ  ↑pm  ℂ )  ∧  𝐹  ⇝  𝑃 ) ) ) |