Metamath Proof Explorer


Theorem lmle

Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007) (Proof shortened by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmle.1 Z = M
lmle.3 J = MetOpen D
lmle.4 φ D ∞Met X
lmle.6 φ M
lmle.7 φ F t J P
lmle.8 φ Q X
lmle.9 φ R *
lmle.10 φ k Z Q D F k R
Assertion lmle φ Q D P R

Proof

Step Hyp Ref Expression
1 lmle.1 Z = M
2 lmle.3 J = MetOpen D
3 lmle.4 φ D ∞Met X
4 lmle.6 φ M
5 lmle.7 φ F t J P
6 lmle.8 φ Q X
7 lmle.9 φ R *
8 lmle.10 φ k Z Q D F k R
9 2 mopntopon D ∞Met X J TopOn X
10 3 9 syl φ J TopOn X
11 lmrel Rel t J
12 releldm Rel t J F t J P F dom t J
13 11 5 12 sylancr φ F dom t J
14 1 10 4 13 lmff φ j Z F j : j X
15 eqid j = j
16 10 adantr φ j Z F j : j X J TopOn X
17 simprl φ j Z F j : j X j Z
18 17 1 eleqtrdi φ j Z F j : j X j M
19 eluzelz j M j
20 18 19 syl φ j Z F j : j X j
21 5 adantr φ j Z F j : j X F t J P
22 oveq2 x = F k Q D x = Q D F k
23 22 breq1d x = F k Q D x R Q D F k R
24 fvres k j F j k = F k
25 24 adantl φ j Z F j : j X k j F j k = F k
26 simprr φ j Z F j : j X F j : j X
27 26 ffvelrnda φ j Z F j : j X k j F j k X
28 25 27 eqeltrrd φ j Z F j : j X k j F k X
29 1 uztrn2 j Z k j k Z
30 17 29 sylan φ j Z F j : j X k j k Z
31 8 adantlr φ j Z F j : j X k Z Q D F k R
32 30 31 syldan φ j Z F j : j X k j Q D F k R
33 23 28 32 elrabd φ j Z F j : j X k j F k x X | Q D x R
34 eqid x X | Q D x R = x X | Q D x R
35 2 34 blcld D ∞Met X Q X R * x X | Q D x R Clsd J
36 3 6 7 35 syl3anc φ x X | Q D x R Clsd J
37 36 adantr φ j Z F j : j X x X | Q D x R Clsd J
38 15 16 20 21 33 37 lmcld φ j Z F j : j X P x X | Q D x R
39 14 38 rexlimddv φ P x X | Q D x R
40 oveq2 x = P Q D x = Q D P
41 40 breq1d x = P Q D x R Q D P R
42 41 elrab P x X | Q D x R P X Q D P R
43 42 simprbi P x X | Q D x R Q D P R
44 39 43 syl φ Q D P R