| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mirval.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | mirval.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | mirval.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | mirval.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | mirval.s |  |-  S = ( pInvG ` G ) | 
						
							| 6 |  | mirval.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 7 |  | mirhl.m |  |-  M = ( S ` A ) | 
						
							| 8 |  | mirhl.k |  |-  K = ( hlG ` G ) | 
						
							| 9 |  | mirhl.a |  |-  ( ph -> A e. P ) | 
						
							| 10 |  | mirhl.x |  |-  ( ph -> X e. P ) | 
						
							| 11 |  | mirhl.y |  |-  ( ph -> Y e. P ) | 
						
							| 12 |  | mirhl.z |  |-  ( ph -> Z e. P ) | 
						
							| 13 |  | mirhl.1 |  |-  ( ph -> X ( K ` Z ) Y ) | 
						
							| 14 | 6 | adantr |  |-  ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> G e. TarskiG ) | 
						
							| 15 | 9 | adantr |  |-  ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> A e. P ) | 
						
							| 16 | 10 | adantr |  |-  ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> X e. P ) | 
						
							| 17 | 12 | adantr |  |-  ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> Z e. P ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> ( M ` X ) = ( M ` Z ) ) | 
						
							| 19 | 1 2 3 4 5 14 15 7 16 17 18 | mireq |  |-  ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> X = Z ) | 
						
							| 20 | 1 3 8 10 11 12 6 | ishlg |  |-  ( ph -> ( X ( K ` Z ) Y <-> ( X =/= Z /\ Y =/= Z /\ ( X e. ( Z I Y ) \/ Y e. ( Z I X ) ) ) ) ) | 
						
							| 21 | 13 20 | mpbid |  |-  ( ph -> ( X =/= Z /\ Y =/= Z /\ ( X e. ( Z I Y ) \/ Y e. ( Z I X ) ) ) ) | 
						
							| 22 | 21 | simp1d |  |-  ( ph -> X =/= Z ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> X =/= Z ) | 
						
							| 24 | 23 | neneqd |  |-  ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> -. X = Z ) | 
						
							| 25 | 19 24 | pm2.65da |  |-  ( ph -> -. ( M ` X ) = ( M ` Z ) ) | 
						
							| 26 | 25 | neqned |  |-  ( ph -> ( M ` X ) =/= ( M ` Z ) ) | 
						
							| 27 | 6 | adantr |  |-  ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> G e. TarskiG ) | 
						
							| 28 | 9 | adantr |  |-  ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> A e. P ) | 
						
							| 29 | 11 | adantr |  |-  ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> Y e. P ) | 
						
							| 30 | 12 | adantr |  |-  ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> Z e. P ) | 
						
							| 31 |  | simpr |  |-  ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> ( M ` Y ) = ( M ` Z ) ) | 
						
							| 32 | 1 2 3 4 5 27 28 7 29 30 31 | mireq |  |-  ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> Y = Z ) | 
						
							| 33 | 21 | simp2d |  |-  ( ph -> Y =/= Z ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> Y =/= Z ) | 
						
							| 35 | 34 | neneqd |  |-  ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> -. Y = Z ) | 
						
							| 36 | 32 35 | pm2.65da |  |-  ( ph -> -. ( M ` Y ) = ( M ` Z ) ) | 
						
							| 37 | 36 | neqned |  |-  ( ph -> ( M ` Y ) =/= ( M ` Z ) ) | 
						
							| 38 | 21 | simp3d |  |-  ( ph -> ( X e. ( Z I Y ) \/ Y e. ( Z I X ) ) ) | 
						
							| 39 | 6 | adantr |  |-  ( ( ph /\ X e. ( Z I Y ) ) -> G e. TarskiG ) | 
						
							| 40 | 9 | adantr |  |-  ( ( ph /\ X e. ( Z I Y ) ) -> A e. P ) | 
						
							| 41 | 12 | adantr |  |-  ( ( ph /\ X e. ( Z I Y ) ) -> Z e. P ) | 
						
							| 42 | 10 | adantr |  |-  ( ( ph /\ X e. ( Z I Y ) ) -> X e. P ) | 
						
							| 43 | 11 | adantr |  |-  ( ( ph /\ X e. ( Z I Y ) ) -> Y e. P ) | 
						
							| 44 |  | simpr |  |-  ( ( ph /\ X e. ( Z I Y ) ) -> X e. ( Z I Y ) ) | 
						
							| 45 | 1 2 3 4 5 39 40 7 41 42 43 44 | mirbtwni |  |-  ( ( ph /\ X e. ( Z I Y ) ) -> ( M ` X ) e. ( ( M ` Z ) I ( M ` Y ) ) ) | 
						
							| 46 | 45 | ex |  |-  ( ph -> ( X e. ( Z I Y ) -> ( M ` X ) e. ( ( M ` Z ) I ( M ` Y ) ) ) ) | 
						
							| 47 | 6 | adantr |  |-  ( ( ph /\ Y e. ( Z I X ) ) -> G e. TarskiG ) | 
						
							| 48 | 9 | adantr |  |-  ( ( ph /\ Y e. ( Z I X ) ) -> A e. P ) | 
						
							| 49 | 12 | adantr |  |-  ( ( ph /\ Y e. ( Z I X ) ) -> Z e. P ) | 
						
							| 50 | 11 | adantr |  |-  ( ( ph /\ Y e. ( Z I X ) ) -> Y e. P ) | 
						
							| 51 | 10 | adantr |  |-  ( ( ph /\ Y e. ( Z I X ) ) -> X e. P ) | 
						
							| 52 |  | simpr |  |-  ( ( ph /\ Y e. ( Z I X ) ) -> Y e. ( Z I X ) ) | 
						
							| 53 | 1 2 3 4 5 47 48 7 49 50 51 52 | mirbtwni |  |-  ( ( ph /\ Y e. ( Z I X ) ) -> ( M ` Y ) e. ( ( M ` Z ) I ( M ` X ) ) ) | 
						
							| 54 | 53 | ex |  |-  ( ph -> ( Y e. ( Z I X ) -> ( M ` Y ) e. ( ( M ` Z ) I ( M ` X ) ) ) ) | 
						
							| 55 | 46 54 | orim12d |  |-  ( ph -> ( ( X e. ( Z I Y ) \/ Y e. ( Z I X ) ) -> ( ( M ` X ) e. ( ( M ` Z ) I ( M ` Y ) ) \/ ( M ` Y ) e. ( ( M ` Z ) I ( M ` X ) ) ) ) ) | 
						
							| 56 | 38 55 | mpd |  |-  ( ph -> ( ( M ` X ) e. ( ( M ` Z ) I ( M ` Y ) ) \/ ( M ` Y ) e. ( ( M ` Z ) I ( M ` X ) ) ) ) | 
						
							| 57 | 1 2 3 4 5 6 9 7 10 | mircl |  |-  ( ph -> ( M ` X ) e. P ) | 
						
							| 58 | 1 2 3 4 5 6 9 7 11 | mircl |  |-  ( ph -> ( M ` Y ) e. P ) | 
						
							| 59 | 1 2 3 4 5 6 9 7 12 | mircl |  |-  ( ph -> ( M ` Z ) e. P ) | 
						
							| 60 | 1 3 8 57 58 59 6 | ishlg |  |-  ( ph -> ( ( M ` X ) ( K ` ( M ` Z ) ) ( M ` Y ) <-> ( ( M ` X ) =/= ( M ` Z ) /\ ( M ` Y ) =/= ( M ` Z ) /\ ( ( M ` X ) e. ( ( M ` Z ) I ( M ` Y ) ) \/ ( M ` Y ) e. ( ( M ` Z ) I ( M ` X ) ) ) ) ) ) | 
						
							| 61 | 26 37 56 60 | mpbir3and |  |-  ( ph -> ( M ` X ) ( K ` ( M ` Z ) ) ( M ` Y ) ) |