Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
|- P = ( Base ` G ) |
2 |
|
mirval.d |
|- .- = ( dist ` G ) |
3 |
|
mirval.i |
|- I = ( Itv ` G ) |
4 |
|
mirval.l |
|- L = ( LineG ` G ) |
5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
7 |
|
mirhl.m |
|- M = ( S ` A ) |
8 |
|
mirhl.k |
|- K = ( hlG ` G ) |
9 |
|
mirhl.a |
|- ( ph -> A e. P ) |
10 |
|
mirhl.x |
|- ( ph -> X e. P ) |
11 |
|
mirhl.y |
|- ( ph -> Y e. P ) |
12 |
|
mirhl.z |
|- ( ph -> Z e. P ) |
13 |
|
mirhl.1 |
|- ( ph -> X ( K ` Z ) Y ) |
14 |
6
|
adantr |
|- ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> G e. TarskiG ) |
15 |
9
|
adantr |
|- ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> A e. P ) |
16 |
10
|
adantr |
|- ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> X e. P ) |
17 |
12
|
adantr |
|- ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> Z e. P ) |
18 |
|
simpr |
|- ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> ( M ` X ) = ( M ` Z ) ) |
19 |
1 2 3 4 5 14 15 7 16 17 18
|
mireq |
|- ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> X = Z ) |
20 |
1 3 8 10 11 12 6
|
ishlg |
|- ( ph -> ( X ( K ` Z ) Y <-> ( X =/= Z /\ Y =/= Z /\ ( X e. ( Z I Y ) \/ Y e. ( Z I X ) ) ) ) ) |
21 |
13 20
|
mpbid |
|- ( ph -> ( X =/= Z /\ Y =/= Z /\ ( X e. ( Z I Y ) \/ Y e. ( Z I X ) ) ) ) |
22 |
21
|
simp1d |
|- ( ph -> X =/= Z ) |
23 |
22
|
adantr |
|- ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> X =/= Z ) |
24 |
23
|
neneqd |
|- ( ( ph /\ ( M ` X ) = ( M ` Z ) ) -> -. X = Z ) |
25 |
19 24
|
pm2.65da |
|- ( ph -> -. ( M ` X ) = ( M ` Z ) ) |
26 |
25
|
neqned |
|- ( ph -> ( M ` X ) =/= ( M ` Z ) ) |
27 |
6
|
adantr |
|- ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> G e. TarskiG ) |
28 |
9
|
adantr |
|- ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> A e. P ) |
29 |
11
|
adantr |
|- ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> Y e. P ) |
30 |
12
|
adantr |
|- ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> Z e. P ) |
31 |
|
simpr |
|- ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> ( M ` Y ) = ( M ` Z ) ) |
32 |
1 2 3 4 5 27 28 7 29 30 31
|
mireq |
|- ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> Y = Z ) |
33 |
21
|
simp2d |
|- ( ph -> Y =/= Z ) |
34 |
33
|
adantr |
|- ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> Y =/= Z ) |
35 |
34
|
neneqd |
|- ( ( ph /\ ( M ` Y ) = ( M ` Z ) ) -> -. Y = Z ) |
36 |
32 35
|
pm2.65da |
|- ( ph -> -. ( M ` Y ) = ( M ` Z ) ) |
37 |
36
|
neqned |
|- ( ph -> ( M ` Y ) =/= ( M ` Z ) ) |
38 |
21
|
simp3d |
|- ( ph -> ( X e. ( Z I Y ) \/ Y e. ( Z I X ) ) ) |
39 |
6
|
adantr |
|- ( ( ph /\ X e. ( Z I Y ) ) -> G e. TarskiG ) |
40 |
9
|
adantr |
|- ( ( ph /\ X e. ( Z I Y ) ) -> A e. P ) |
41 |
12
|
adantr |
|- ( ( ph /\ X e. ( Z I Y ) ) -> Z e. P ) |
42 |
10
|
adantr |
|- ( ( ph /\ X e. ( Z I Y ) ) -> X e. P ) |
43 |
11
|
adantr |
|- ( ( ph /\ X e. ( Z I Y ) ) -> Y e. P ) |
44 |
|
simpr |
|- ( ( ph /\ X e. ( Z I Y ) ) -> X e. ( Z I Y ) ) |
45 |
1 2 3 4 5 39 40 7 41 42 43 44
|
mirbtwni |
|- ( ( ph /\ X e. ( Z I Y ) ) -> ( M ` X ) e. ( ( M ` Z ) I ( M ` Y ) ) ) |
46 |
45
|
ex |
|- ( ph -> ( X e. ( Z I Y ) -> ( M ` X ) e. ( ( M ` Z ) I ( M ` Y ) ) ) ) |
47 |
6
|
adantr |
|- ( ( ph /\ Y e. ( Z I X ) ) -> G e. TarskiG ) |
48 |
9
|
adantr |
|- ( ( ph /\ Y e. ( Z I X ) ) -> A e. P ) |
49 |
12
|
adantr |
|- ( ( ph /\ Y e. ( Z I X ) ) -> Z e. P ) |
50 |
11
|
adantr |
|- ( ( ph /\ Y e. ( Z I X ) ) -> Y e. P ) |
51 |
10
|
adantr |
|- ( ( ph /\ Y e. ( Z I X ) ) -> X e. P ) |
52 |
|
simpr |
|- ( ( ph /\ Y e. ( Z I X ) ) -> Y e. ( Z I X ) ) |
53 |
1 2 3 4 5 47 48 7 49 50 51 52
|
mirbtwni |
|- ( ( ph /\ Y e. ( Z I X ) ) -> ( M ` Y ) e. ( ( M ` Z ) I ( M ` X ) ) ) |
54 |
53
|
ex |
|- ( ph -> ( Y e. ( Z I X ) -> ( M ` Y ) e. ( ( M ` Z ) I ( M ` X ) ) ) ) |
55 |
46 54
|
orim12d |
|- ( ph -> ( ( X e. ( Z I Y ) \/ Y e. ( Z I X ) ) -> ( ( M ` X ) e. ( ( M ` Z ) I ( M ` Y ) ) \/ ( M ` Y ) e. ( ( M ` Z ) I ( M ` X ) ) ) ) ) |
56 |
38 55
|
mpd |
|- ( ph -> ( ( M ` X ) e. ( ( M ` Z ) I ( M ` Y ) ) \/ ( M ` Y ) e. ( ( M ` Z ) I ( M ` X ) ) ) ) |
57 |
1 2 3 4 5 6 9 7 10
|
mircl |
|- ( ph -> ( M ` X ) e. P ) |
58 |
1 2 3 4 5 6 9 7 11
|
mircl |
|- ( ph -> ( M ` Y ) e. P ) |
59 |
1 2 3 4 5 6 9 7 12
|
mircl |
|- ( ph -> ( M ` Z ) e. P ) |
60 |
1 3 8 57 58 59 6
|
ishlg |
|- ( ph -> ( ( M ` X ) ( K ` ( M ` Z ) ) ( M ` Y ) <-> ( ( M ` X ) =/= ( M ` Z ) /\ ( M ` Y ) =/= ( M ` Z ) /\ ( ( M ` X ) e. ( ( M ` Z ) I ( M ` Y ) ) \/ ( M ` Y ) e. ( ( M ` Z ) I ( M ` X ) ) ) ) ) ) |
61 |
26 37 56 60
|
mpbir3and |
|- ( ph -> ( M ` X ) ( K ` ( M ` Z ) ) ( M ` Y ) ) |