| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mirval.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mirval.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | mirval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | mirval.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | mirval.s | ⊢ 𝑆  =  ( pInvG ‘ 𝐺 ) | 
						
							| 6 |  | mirval.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 7 |  | mirhl.m | ⊢ 𝑀  =  ( 𝑆 ‘ 𝐴 ) | 
						
							| 8 |  | mirhl.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 9 |  | mirhl.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 10 |  | mirhl.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 11 |  | mirhl.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑃 ) | 
						
							| 12 |  | mirhl.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑃 ) | 
						
							| 13 |  | mirhl.1 | ⊢ ( 𝜑  →  𝑋 ( 𝐾 ‘ 𝑍 ) 𝑌 ) | 
						
							| 14 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑋 )  =  ( 𝑀 ‘ 𝑍 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 15 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑋 )  =  ( 𝑀 ‘ 𝑍 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 16 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑋 )  =  ( 𝑀 ‘ 𝑍 ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 17 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑋 )  =  ( 𝑀 ‘ 𝑍 ) )  →  𝑍  ∈  𝑃 ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑋 )  =  ( 𝑀 ‘ 𝑍 ) )  →  ( 𝑀 ‘ 𝑋 )  =  ( 𝑀 ‘ 𝑍 ) ) | 
						
							| 19 | 1 2 3 4 5 14 15 7 16 17 18 | mireq | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑋 )  =  ( 𝑀 ‘ 𝑍 ) )  →  𝑋  =  𝑍 ) | 
						
							| 20 | 1 3 8 10 11 12 6 | ishlg | ⊢ ( 𝜑  →  ( 𝑋 ( 𝐾 ‘ 𝑍 ) 𝑌  ↔  ( 𝑋  ≠  𝑍  ∧  𝑌  ≠  𝑍  ∧  ( 𝑋  ∈  ( 𝑍 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑍 𝐼 𝑋 ) ) ) ) ) | 
						
							| 21 | 13 20 | mpbid | ⊢ ( 𝜑  →  ( 𝑋  ≠  𝑍  ∧  𝑌  ≠  𝑍  ∧  ( 𝑋  ∈  ( 𝑍 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑍 𝐼 𝑋 ) ) ) ) | 
						
							| 22 | 21 | simp1d | ⊢ ( 𝜑  →  𝑋  ≠  𝑍 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑋 )  =  ( 𝑀 ‘ 𝑍 ) )  →  𝑋  ≠  𝑍 ) | 
						
							| 24 | 23 | neneqd | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑋 )  =  ( 𝑀 ‘ 𝑍 ) )  →  ¬  𝑋  =  𝑍 ) | 
						
							| 25 | 19 24 | pm2.65da | ⊢ ( 𝜑  →  ¬  ( 𝑀 ‘ 𝑋 )  =  ( 𝑀 ‘ 𝑍 ) ) | 
						
							| 26 | 25 | neqned | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑋 )  ≠  ( 𝑀 ‘ 𝑍 ) ) | 
						
							| 27 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑌 )  =  ( 𝑀 ‘ 𝑍 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 28 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑌 )  =  ( 𝑀 ‘ 𝑍 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 29 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑌 )  =  ( 𝑀 ‘ 𝑍 ) )  →  𝑌  ∈  𝑃 ) | 
						
							| 30 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑌 )  =  ( 𝑀 ‘ 𝑍 ) )  →  𝑍  ∈  𝑃 ) | 
						
							| 31 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑌 )  =  ( 𝑀 ‘ 𝑍 ) )  →  ( 𝑀 ‘ 𝑌 )  =  ( 𝑀 ‘ 𝑍 ) ) | 
						
							| 32 | 1 2 3 4 5 27 28 7 29 30 31 | mireq | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑌 )  =  ( 𝑀 ‘ 𝑍 ) )  →  𝑌  =  𝑍 ) | 
						
							| 33 | 21 | simp2d | ⊢ ( 𝜑  →  𝑌  ≠  𝑍 ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑌 )  =  ( 𝑀 ‘ 𝑍 ) )  →  𝑌  ≠  𝑍 ) | 
						
							| 35 | 34 | neneqd | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑌 )  =  ( 𝑀 ‘ 𝑍 ) )  →  ¬  𝑌  =  𝑍 ) | 
						
							| 36 | 32 35 | pm2.65da | ⊢ ( 𝜑  →  ¬  ( 𝑀 ‘ 𝑌 )  =  ( 𝑀 ‘ 𝑍 ) ) | 
						
							| 37 | 36 | neqned | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑌 )  ≠  ( 𝑀 ‘ 𝑍 ) ) | 
						
							| 38 | 21 | simp3d | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑍 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑍 𝐼 𝑋 ) ) ) | 
						
							| 39 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑍 𝐼 𝑌 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 40 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑍 𝐼 𝑌 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 41 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑍 𝐼 𝑌 ) )  →  𝑍  ∈  𝑃 ) | 
						
							| 42 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑍 𝐼 𝑌 ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 43 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑍 𝐼 𝑌 ) )  →  𝑌  ∈  𝑃 ) | 
						
							| 44 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑍 𝐼 𝑌 ) )  →  𝑋  ∈  ( 𝑍 𝐼 𝑌 ) ) | 
						
							| 45 | 1 2 3 4 5 39 40 7 41 42 43 44 | mirbtwni | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑍 𝐼 𝑌 ) )  →  ( 𝑀 ‘ 𝑋 )  ∈  ( ( 𝑀 ‘ 𝑍 ) 𝐼 ( 𝑀 ‘ 𝑌 ) ) ) | 
						
							| 46 | 45 | ex | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑍 𝐼 𝑌 )  →  ( 𝑀 ‘ 𝑋 )  ∈  ( ( 𝑀 ‘ 𝑍 ) 𝐼 ( 𝑀 ‘ 𝑌 ) ) ) ) | 
						
							| 47 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( 𝑍 𝐼 𝑋 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 48 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( 𝑍 𝐼 𝑋 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 49 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( 𝑍 𝐼 𝑋 ) )  →  𝑍  ∈  𝑃 ) | 
						
							| 50 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( 𝑍 𝐼 𝑋 ) )  →  𝑌  ∈  𝑃 ) | 
						
							| 51 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( 𝑍 𝐼 𝑋 ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 52 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( 𝑍 𝐼 𝑋 ) )  →  𝑌  ∈  ( 𝑍 𝐼 𝑋 ) ) | 
						
							| 53 | 1 2 3 4 5 47 48 7 49 50 51 52 | mirbtwni | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( 𝑍 𝐼 𝑋 ) )  →  ( 𝑀 ‘ 𝑌 )  ∈  ( ( 𝑀 ‘ 𝑍 ) 𝐼 ( 𝑀 ‘ 𝑋 ) ) ) | 
						
							| 54 | 53 | ex | ⊢ ( 𝜑  →  ( 𝑌  ∈  ( 𝑍 𝐼 𝑋 )  →  ( 𝑀 ‘ 𝑌 )  ∈  ( ( 𝑀 ‘ 𝑍 ) 𝐼 ( 𝑀 ‘ 𝑋 ) ) ) ) | 
						
							| 55 | 46 54 | orim12d | ⊢ ( 𝜑  →  ( ( 𝑋  ∈  ( 𝑍 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑍 𝐼 𝑋 ) )  →  ( ( 𝑀 ‘ 𝑋 )  ∈  ( ( 𝑀 ‘ 𝑍 ) 𝐼 ( 𝑀 ‘ 𝑌 ) )  ∨  ( 𝑀 ‘ 𝑌 )  ∈  ( ( 𝑀 ‘ 𝑍 ) 𝐼 ( 𝑀 ‘ 𝑋 ) ) ) ) ) | 
						
							| 56 | 38 55 | mpd | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑋 )  ∈  ( ( 𝑀 ‘ 𝑍 ) 𝐼 ( 𝑀 ‘ 𝑌 ) )  ∨  ( 𝑀 ‘ 𝑌 )  ∈  ( ( 𝑀 ‘ 𝑍 ) 𝐼 ( 𝑀 ‘ 𝑋 ) ) ) ) | 
						
							| 57 | 1 2 3 4 5 6 9 7 10 | mircl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑋 )  ∈  𝑃 ) | 
						
							| 58 | 1 2 3 4 5 6 9 7 11 | mircl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑌 )  ∈  𝑃 ) | 
						
							| 59 | 1 2 3 4 5 6 9 7 12 | mircl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑍 )  ∈  𝑃 ) | 
						
							| 60 | 1 3 8 57 58 59 6 | ishlg | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑋 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑍 ) ) ( 𝑀 ‘ 𝑌 )  ↔  ( ( 𝑀 ‘ 𝑋 )  ≠  ( 𝑀 ‘ 𝑍 )  ∧  ( 𝑀 ‘ 𝑌 )  ≠  ( 𝑀 ‘ 𝑍 )  ∧  ( ( 𝑀 ‘ 𝑋 )  ∈  ( ( 𝑀 ‘ 𝑍 ) 𝐼 ( 𝑀 ‘ 𝑌 ) )  ∨  ( 𝑀 ‘ 𝑌 )  ∈  ( ( 𝑀 ‘ 𝑍 ) 𝐼 ( 𝑀 ‘ 𝑋 ) ) ) ) ) ) | 
						
							| 61 | 26 37 56 60 | mpbir3and | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑋 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑍 ) ) ( 𝑀 ‘ 𝑌 ) ) |