| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnccoe |
|- ( P e. ( Monic ` S ) -> ( ( coeff ` P ) ` ( deg ` P ) ) = 1 ) |
| 2 |
|
coe0 |
|- ( coeff ` 0p ) = ( NN0 X. { 0 } ) |
| 3 |
2
|
fveq1i |
|- ( ( coeff ` 0p ) ` ( deg ` 0p ) ) = ( ( NN0 X. { 0 } ) ` ( deg ` 0p ) ) |
| 4 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
| 5 |
|
0nn0 |
|- 0 e. NN0 |
| 6 |
4 5
|
eqeltri |
|- ( deg ` 0p ) e. NN0 |
| 7 |
|
c0ex |
|- 0 e. _V |
| 8 |
7
|
fvconst2 |
|- ( ( deg ` 0p ) e. NN0 -> ( ( NN0 X. { 0 } ) ` ( deg ` 0p ) ) = 0 ) |
| 9 |
6 8
|
ax-mp |
|- ( ( NN0 X. { 0 } ) ` ( deg ` 0p ) ) = 0 |
| 10 |
3 9
|
eqtri |
|- ( ( coeff ` 0p ) ` ( deg ` 0p ) ) = 0 |
| 11 |
|
0ne1 |
|- 0 =/= 1 |
| 12 |
10 11
|
eqnetri |
|- ( ( coeff ` 0p ) ` ( deg ` 0p ) ) =/= 1 |
| 13 |
|
fveq2 |
|- ( P = 0p -> ( coeff ` P ) = ( coeff ` 0p ) ) |
| 14 |
|
fveq2 |
|- ( P = 0p -> ( deg ` P ) = ( deg ` 0p ) ) |
| 15 |
13 14
|
fveq12d |
|- ( P = 0p -> ( ( coeff ` P ) ` ( deg ` P ) ) = ( ( coeff ` 0p ) ` ( deg ` 0p ) ) ) |
| 16 |
15
|
neeq1d |
|- ( P = 0p -> ( ( ( coeff ` P ) ` ( deg ` P ) ) =/= 1 <-> ( ( coeff ` 0p ) ` ( deg ` 0p ) ) =/= 1 ) ) |
| 17 |
12 16
|
mpbiri |
|- ( P = 0p -> ( ( coeff ` P ) ` ( deg ` P ) ) =/= 1 ) |
| 18 |
17
|
necon2i |
|- ( ( ( coeff ` P ) ` ( deg ` P ) ) = 1 -> P =/= 0p ) |
| 19 |
1 18
|
syl |
|- ( P e. ( Monic ` S ) -> P =/= 0p ) |