Metamath Proof Explorer


Theorem mncn0

Description: A monic polynomial is not zero. (Contributed by Stefan O'Rear, 5-Dec-2014)

Ref Expression
Assertion mncn0
|- ( P e. ( Monic ` S ) -> P =/= 0p )

Proof

Step Hyp Ref Expression
1 mnccoe
 |-  ( P e. ( Monic ` S ) -> ( ( coeff ` P ) ` ( deg ` P ) ) = 1 )
2 coe0
 |-  ( coeff ` 0p ) = ( NN0 X. { 0 } )
3 2 fveq1i
 |-  ( ( coeff ` 0p ) ` ( deg ` 0p ) ) = ( ( NN0 X. { 0 } ) ` ( deg ` 0p ) )
4 dgr0
 |-  ( deg ` 0p ) = 0
5 0nn0
 |-  0 e. NN0
6 4 5 eqeltri
 |-  ( deg ` 0p ) e. NN0
7 c0ex
 |-  0 e. _V
8 7 fvconst2
 |-  ( ( deg ` 0p ) e. NN0 -> ( ( NN0 X. { 0 } ) ` ( deg ` 0p ) ) = 0 )
9 6 8 ax-mp
 |-  ( ( NN0 X. { 0 } ) ` ( deg ` 0p ) ) = 0
10 3 9 eqtri
 |-  ( ( coeff ` 0p ) ` ( deg ` 0p ) ) = 0
11 0ne1
 |-  0 =/= 1
12 10 11 eqnetri
 |-  ( ( coeff ` 0p ) ` ( deg ` 0p ) ) =/= 1
13 fveq2
 |-  ( P = 0p -> ( coeff ` P ) = ( coeff ` 0p ) )
14 fveq2
 |-  ( P = 0p -> ( deg ` P ) = ( deg ` 0p ) )
15 13 14 fveq12d
 |-  ( P = 0p -> ( ( coeff ` P ) ` ( deg ` P ) ) = ( ( coeff ` 0p ) ` ( deg ` 0p ) ) )
16 15 neeq1d
 |-  ( P = 0p -> ( ( ( coeff ` P ) ` ( deg ` P ) ) =/= 1 <-> ( ( coeff ` 0p ) ` ( deg ` 0p ) ) =/= 1 ) )
17 12 16 mpbiri
 |-  ( P = 0p -> ( ( coeff ` P ) ` ( deg ` P ) ) =/= 1 )
18 17 necon2i
 |-  ( ( ( coeff ` P ) ` ( deg ` P ) ) = 1 -> P =/= 0p )
19 1 18 syl
 |-  ( P e. ( Monic ` S ) -> P =/= 0p )