Step |
Hyp |
Ref |
Expression |
1 |
|
mnccoe |
|- ( P e. ( Monic ` S ) -> ( ( coeff ` P ) ` ( deg ` P ) ) = 1 ) |
2 |
|
coe0 |
|- ( coeff ` 0p ) = ( NN0 X. { 0 } ) |
3 |
2
|
fveq1i |
|- ( ( coeff ` 0p ) ` ( deg ` 0p ) ) = ( ( NN0 X. { 0 } ) ` ( deg ` 0p ) ) |
4 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
5 |
|
0nn0 |
|- 0 e. NN0 |
6 |
4 5
|
eqeltri |
|- ( deg ` 0p ) e. NN0 |
7 |
|
c0ex |
|- 0 e. _V |
8 |
7
|
fvconst2 |
|- ( ( deg ` 0p ) e. NN0 -> ( ( NN0 X. { 0 } ) ` ( deg ` 0p ) ) = 0 ) |
9 |
6 8
|
ax-mp |
|- ( ( NN0 X. { 0 } ) ` ( deg ` 0p ) ) = 0 |
10 |
3 9
|
eqtri |
|- ( ( coeff ` 0p ) ` ( deg ` 0p ) ) = 0 |
11 |
|
0ne1 |
|- 0 =/= 1 |
12 |
10 11
|
eqnetri |
|- ( ( coeff ` 0p ) ` ( deg ` 0p ) ) =/= 1 |
13 |
|
fveq2 |
|- ( P = 0p -> ( coeff ` P ) = ( coeff ` 0p ) ) |
14 |
|
fveq2 |
|- ( P = 0p -> ( deg ` P ) = ( deg ` 0p ) ) |
15 |
13 14
|
fveq12d |
|- ( P = 0p -> ( ( coeff ` P ) ` ( deg ` P ) ) = ( ( coeff ` 0p ) ` ( deg ` 0p ) ) ) |
16 |
15
|
neeq1d |
|- ( P = 0p -> ( ( ( coeff ` P ) ` ( deg ` P ) ) =/= 1 <-> ( ( coeff ` 0p ) ` ( deg ` 0p ) ) =/= 1 ) ) |
17 |
12 16
|
mpbiri |
|- ( P = 0p -> ( ( coeff ` P ) ` ( deg ` P ) ) =/= 1 ) |
18 |
17
|
necon2i |
|- ( ( ( coeff ` P ) ` ( deg ` P ) ) = 1 -> P =/= 0p ) |
19 |
1 18
|
syl |
|- ( P e. ( Monic ` S ) -> P =/= 0p ) |