| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnccoe |
⊢ ( 𝑃 ∈ ( Monic ‘ 𝑆 ) → ( ( coeff ‘ 𝑃 ) ‘ ( deg ‘ 𝑃 ) ) = 1 ) |
| 2 |
|
coe0 |
⊢ ( coeff ‘ 0𝑝 ) = ( ℕ0 × { 0 } ) |
| 3 |
2
|
fveq1i |
⊢ ( ( coeff ‘ 0𝑝 ) ‘ ( deg ‘ 0𝑝 ) ) = ( ( ℕ0 × { 0 } ) ‘ ( deg ‘ 0𝑝 ) ) |
| 4 |
|
dgr0 |
⊢ ( deg ‘ 0𝑝 ) = 0 |
| 5 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 6 |
4 5
|
eqeltri |
⊢ ( deg ‘ 0𝑝 ) ∈ ℕ0 |
| 7 |
|
c0ex |
⊢ 0 ∈ V |
| 8 |
7
|
fvconst2 |
⊢ ( ( deg ‘ 0𝑝 ) ∈ ℕ0 → ( ( ℕ0 × { 0 } ) ‘ ( deg ‘ 0𝑝 ) ) = 0 ) |
| 9 |
6 8
|
ax-mp |
⊢ ( ( ℕ0 × { 0 } ) ‘ ( deg ‘ 0𝑝 ) ) = 0 |
| 10 |
3 9
|
eqtri |
⊢ ( ( coeff ‘ 0𝑝 ) ‘ ( deg ‘ 0𝑝 ) ) = 0 |
| 11 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 12 |
10 11
|
eqnetri |
⊢ ( ( coeff ‘ 0𝑝 ) ‘ ( deg ‘ 0𝑝 ) ) ≠ 1 |
| 13 |
|
fveq2 |
⊢ ( 𝑃 = 0𝑝 → ( coeff ‘ 𝑃 ) = ( coeff ‘ 0𝑝 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑃 = 0𝑝 → ( deg ‘ 𝑃 ) = ( deg ‘ 0𝑝 ) ) |
| 15 |
13 14
|
fveq12d |
⊢ ( 𝑃 = 0𝑝 → ( ( coeff ‘ 𝑃 ) ‘ ( deg ‘ 𝑃 ) ) = ( ( coeff ‘ 0𝑝 ) ‘ ( deg ‘ 0𝑝 ) ) ) |
| 16 |
15
|
neeq1d |
⊢ ( 𝑃 = 0𝑝 → ( ( ( coeff ‘ 𝑃 ) ‘ ( deg ‘ 𝑃 ) ) ≠ 1 ↔ ( ( coeff ‘ 0𝑝 ) ‘ ( deg ‘ 0𝑝 ) ) ≠ 1 ) ) |
| 17 |
12 16
|
mpbiri |
⊢ ( 𝑃 = 0𝑝 → ( ( coeff ‘ 𝑃 ) ‘ ( deg ‘ 𝑃 ) ) ≠ 1 ) |
| 18 |
17
|
necon2i |
⊢ ( ( ( coeff ‘ 𝑃 ) ‘ ( deg ‘ 𝑃 ) ) = 1 → 𝑃 ≠ 0𝑝 ) |
| 19 |
1 18
|
syl |
⊢ ( 𝑃 ∈ ( Monic ‘ 𝑆 ) → 𝑃 ≠ 0𝑝 ) |