Metamath Proof Explorer


Theorem mncn0

Description: A monic polynomial is not zero. (Contributed by Stefan O'Rear, 5-Dec-2014)

Ref Expression
Assertion mncn0 ( 𝑃 ∈ ( Monic ‘ 𝑆 ) → 𝑃 ≠ 0𝑝 )

Proof

Step Hyp Ref Expression
1 mnccoe ( 𝑃 ∈ ( Monic ‘ 𝑆 ) → ( ( coeff ‘ 𝑃 ) ‘ ( deg ‘ 𝑃 ) ) = 1 )
2 coe0 ( coeff ‘ 0𝑝 ) = ( ℕ0 × { 0 } )
3 2 fveq1i ( ( coeff ‘ 0𝑝 ) ‘ ( deg ‘ 0𝑝 ) ) = ( ( ℕ0 × { 0 } ) ‘ ( deg ‘ 0𝑝 ) )
4 dgr0 ( deg ‘ 0𝑝 ) = 0
5 0nn0 0 ∈ ℕ0
6 4 5 eqeltri ( deg ‘ 0𝑝 ) ∈ ℕ0
7 c0ex 0 ∈ V
8 7 fvconst2 ( ( deg ‘ 0𝑝 ) ∈ ℕ0 → ( ( ℕ0 × { 0 } ) ‘ ( deg ‘ 0𝑝 ) ) = 0 )
9 6 8 ax-mp ( ( ℕ0 × { 0 } ) ‘ ( deg ‘ 0𝑝 ) ) = 0
10 3 9 eqtri ( ( coeff ‘ 0𝑝 ) ‘ ( deg ‘ 0𝑝 ) ) = 0
11 0ne1 0 ≠ 1
12 10 11 eqnetri ( ( coeff ‘ 0𝑝 ) ‘ ( deg ‘ 0𝑝 ) ) ≠ 1
13 fveq2 ( 𝑃 = 0𝑝 → ( coeff ‘ 𝑃 ) = ( coeff ‘ 0𝑝 ) )
14 fveq2 ( 𝑃 = 0𝑝 → ( deg ‘ 𝑃 ) = ( deg ‘ 0𝑝 ) )
15 13 14 fveq12d ( 𝑃 = 0𝑝 → ( ( coeff ‘ 𝑃 ) ‘ ( deg ‘ 𝑃 ) ) = ( ( coeff ‘ 0𝑝 ) ‘ ( deg ‘ 0𝑝 ) ) )
16 15 neeq1d ( 𝑃 = 0𝑝 → ( ( ( coeff ‘ 𝑃 ) ‘ ( deg ‘ 𝑃 ) ) ≠ 1 ↔ ( ( coeff ‘ 0𝑝 ) ‘ ( deg ‘ 0𝑝 ) ) ≠ 1 ) )
17 12 16 mpbiri ( 𝑃 = 0𝑝 → ( ( coeff ‘ 𝑃 ) ‘ ( deg ‘ 𝑃 ) ) ≠ 1 )
18 17 necon2i ( ( ( coeff ‘ 𝑃 ) ‘ ( deg ‘ 𝑃 ) ) = 1 → 𝑃 ≠ 0𝑝 )
19 1 18 syl ( 𝑃 ∈ ( Monic ‘ 𝑆 ) → 𝑃 ≠ 0𝑝 )