| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mopni.1 |
|- J = ( MetOpen ` D ) |
| 2 |
1
|
mopni2 |
|- ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) -> E. y e. RR+ ( P ( ball ` D ) y ) C_ A ) |
| 3 |
2
|
adantr |
|- ( ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) /\ R e. RR+ ) -> E. y e. RR+ ( P ( ball ` D ) y ) C_ A ) |
| 4 |
|
simp1 |
|- ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) -> D e. ( *Met ` X ) ) |
| 5 |
1
|
mopnss |
|- ( ( D e. ( *Met ` X ) /\ A e. J ) -> A C_ X ) |
| 6 |
5
|
sselda |
|- ( ( ( D e. ( *Met ` X ) /\ A e. J ) /\ P e. A ) -> P e. X ) |
| 7 |
6
|
3impa |
|- ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) -> P e. X ) |
| 8 |
4 7
|
jca |
|- ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) -> ( D e. ( *Met ` X ) /\ P e. X ) ) |
| 9 |
|
ssblex |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ y e. RR+ ) ) -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) y ) ) ) |
| 10 |
8 9
|
sylan |
|- ( ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) /\ ( R e. RR+ /\ y e. RR+ ) ) -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) y ) ) ) |
| 11 |
10
|
anassrs |
|- ( ( ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) /\ R e. RR+ ) /\ y e. RR+ ) -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) y ) ) ) |
| 12 |
|
sstr |
|- ( ( ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) y ) /\ ( P ( ball ` D ) y ) C_ A ) -> ( P ( ball ` D ) x ) C_ A ) |
| 13 |
12
|
expcom |
|- ( ( P ( ball ` D ) y ) C_ A -> ( ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) y ) -> ( P ( ball ` D ) x ) C_ A ) ) |
| 14 |
13
|
anim2d |
|- ( ( P ( ball ` D ) y ) C_ A -> ( ( x < R /\ ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) y ) ) -> ( x < R /\ ( P ( ball ` D ) x ) C_ A ) ) ) |
| 15 |
14
|
reximdv |
|- ( ( P ( ball ` D ) y ) C_ A -> ( E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) y ) ) -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ A ) ) ) |
| 16 |
11 15
|
syl5com |
|- ( ( ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) /\ R e. RR+ ) /\ y e. RR+ ) -> ( ( P ( ball ` D ) y ) C_ A -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ A ) ) ) |
| 17 |
16
|
rexlimdva |
|- ( ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) /\ R e. RR+ ) -> ( E. y e. RR+ ( P ( ball ` D ) y ) C_ A -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ A ) ) ) |
| 18 |
3 17
|
mpd |
|- ( ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) /\ R e. RR+ ) -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ A ) ) |