Metamath Proof Explorer


Theorem mopni3

Description: An open set of a metric space includes an arbitrarily small ball around each of its points. (Contributed by NM, 20-Sep-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopni.1 J=MetOpenD
Assertion mopni3 D∞MetXAJPAR+x+x<RPballDxA

Proof

Step Hyp Ref Expression
1 mopni.1 J=MetOpenD
2 1 mopni2 D∞MetXAJPAy+PballDyA
3 2 adantr D∞MetXAJPAR+y+PballDyA
4 simp1 D∞MetXAJPAD∞MetX
5 1 mopnss D∞MetXAJAX
6 5 sselda D∞MetXAJPAPX
7 6 3impa D∞MetXAJPAPX
8 4 7 jca D∞MetXAJPAD∞MetXPX
9 ssblex D∞MetXPXR+y+x+x<RPballDxPballDy
10 8 9 sylan D∞MetXAJPAR+y+x+x<RPballDxPballDy
11 10 anassrs D∞MetXAJPAR+y+x+x<RPballDxPballDy
12 sstr PballDxPballDyPballDyAPballDxA
13 12 expcom PballDyAPballDxPballDyPballDxA
14 13 anim2d PballDyAx<RPballDxPballDyx<RPballDxA
15 14 reximdv PballDyAx+x<RPballDxPballDyx+x<RPballDxA
16 11 15 syl5com D∞MetXAJPAR+y+PballDyAx+x<RPballDxA
17 16 rexlimdva D∞MetXAJPAR+y+PballDyAx+x<RPballDxA
18 3 17 mpd D∞MetXAJPAR+x+x<RPballDxA