| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplgrp.p |
|- P = ( I mPoly R ) |
| 2 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
| 3 |
1
|
mpllmod |
|- ( ( I e. V /\ R e. Ring ) -> P e. LMod ) |
| 4 |
2 3
|
sylan2 |
|- ( ( I e. V /\ R e. DivRing ) -> P e. LMod ) |
| 5 |
|
simpl |
|- ( ( I e. V /\ R e. DivRing ) -> I e. V ) |
| 6 |
|
simpr |
|- ( ( I e. V /\ R e. DivRing ) -> R e. DivRing ) |
| 7 |
1 5 6
|
mplsca |
|- ( ( I e. V /\ R e. DivRing ) -> R = ( Scalar ` P ) ) |
| 8 |
7 6
|
eqeltrrd |
|- ( ( I e. V /\ R e. DivRing ) -> ( Scalar ` P ) e. DivRing ) |
| 9 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 10 |
9
|
islvec |
|- ( P e. LVec <-> ( P e. LMod /\ ( Scalar ` P ) e. DivRing ) ) |
| 11 |
4 8 10
|
sylanbrc |
|- ( ( I e. V /\ R e. DivRing ) -> P e. LVec ) |